Publications by authors named "Raffaella Sabatino"

ZVI-Fenton, which is the combination of zero-valent iron (metallic Fe) and HO is a relatively cheap advanced oxidation process for the elimination of contaminants from wastewater. Here we experimentally tested the ZVI-Fenton reaction at pH 4 towards two crucial goals in the treatment of secondary (partially treated) urban wastewater: (i) degradation of pharmaceuticals such as anti-inflammatory drugs (ibuprofen) and antibiotics (cefazolin, sulfamethoxazole), and (ii) elimination of a considerable fraction of bacteria through a combination of acidic pH and strongly oxidising conditions. In detail, ZVI-Fenton at pH 4 achieved degradation of both primary contaminants and potentially problematic transformation intermediates.

View Article and Find Full Text PDF
Article Synopsis
  • * A study was conducted on a wastewater treatment plant (WWTP) to evaluate the presence of ARB, antibiotic resistance genes (ARGs), and pathogenic bacteria, finding significant levels at all treatment stages, especially sulfamethoxazole-resistant bacteria and the sulII gene.
  • * The results noted a decrease in these bacteria during treatment but still found them in the effluent intended for reuse, highlighting the link between heavy metals and ARB, which calls for better monitoring and interventions to protect public health when reusing wastewater in agriculture.
View Article and Find Full Text PDF
Article Synopsis
  • * This first comprehensive study in an anchialine cave revealed various ARGs, with bacitracin resistance and multidrug resistance being the most prevalent, influenced by the cave's salinity gradient.
  • * The findings indicate that these caves may serve as reservoirs for unknown resistance genes and highlight the importance of further research on ARGs in unique ecosystems for better understanding and addressing antibiotic resistance.
View Article and Find Full Text PDF

In the circular economy, reusing agricultural residues, treated biowaste, and sewage sludges-commonly referred to as soil conditioners-in agriculture is essential for converting waste into valuable resources. However, these materials can also contribute to the spread of antimicrobial-resistant pathogens in treated soils. In this study, we analyzed different soil conditioners categorized into five groups: compost from source-separated biowaste and green waste, agro-industrial digestate, digestate from anaerobic digestion of source-separated biowaste, compost from biowaste digestate, and sludges from wastewater treatment plants.

View Article and Find Full Text PDF

Introduction: Constructed wetlands (CWs) are nature-based solutions for wastewater treatment where the root system microbiome plays a key role in terms of nutrient and pollutant removal. Nonetheless, little is known on plant-microbe interactions and bacterial population selection in CWs, which are mostly characterized in terms of engineering aspects.

Methods: Here, cultivation-independent and cultivation-based analyses were applied to study the bacterial communities associated to the root systems of and co-occurring in the same cell of a CW receiving primary treated wastewaters.

View Article and Find Full Text PDF

Wastewater treatment plants are hotspots for the release of antimicrobial resistant pathogenic bacteria into aquatic ecosystems, significantly contributing to the cycle of antimicrobial resistance. Special attention should be paid to antimicrobial resistant ESKAPE bacteria, which have been identified as high-priority targets for control measures. Among them, Klebsiella pneumoniae is particularly noteworthy.

View Article and Find Full Text PDF

Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination.

View Article and Find Full Text PDF

Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotic resistance genes (ARGs) are common in waterways impacted by human activities, making it crucial to study their behavior in different ecosystems.
  • In a study of Lake Maggiore and its tributaries, researchers found that the presence of specific ARGs was influenced by local pollution sources, such as wastewater treatment plants and urban development.
  • The findings indicated that treated wastewater contributes minimally to the spread of ARGs, highlighting the need to reevaluate the main sources of ARG pollution in aquatic environments.
View Article and Find Full Text PDF

Microplastic particles are persistent micropollutants that provide a substrate for the growth of bacterial biofilms, posing a threat to the environment. This study explores the changes in commercially available food containers made of conventional (polypropylene PP, polyethylene terephthalate PET), innovative biodegradable (Mater-Bi) and natural (wood and cellulose) materials, when introduced in the surface waters of Lake Maggiore for 43 days. Spectral changes revealed by FT-IR spectroscopy in PET and Mater-Bi, and changes in thermal properties of all human-made material tested indicated a degradation process occurred during environmental exposure.

View Article and Find Full Text PDF

The presence of antimicrobial resistance genes (ARGs) in the microbiome of freshwater communities is a consequence of thousands of years of evolution but also of the pressure exerted by anthropogenic activities, with potential negative impact on environmental and human health. In this study, we investigated the distribution of ARGs in Lake Tanganyika (LT)'s water column to define the resistome of this ancient lake. Additionally, we compared the resistome of LT with that of Lake Baikal (LB), the oldest known lake with different environmental characteristics and a lower anthropogenic pollution than LT.

View Article and Find Full Text PDF

Bacteriophages are known as players in the transmission of antimicrobial resistance genes (ARGs) by horizontal gene transfer. In this study, we characterized the bacteriophage community and the associated ARGs to estimate the potential for phages to spread ARGs in aquatic ecosystems analyzing the intra- and extracellular DNA isolated from two wastewater treatment plants (WWTPs) by shotgun metagenomics. We compared the phage antimicrobial resistome with the bacterial resistome and investigated the effect of the final disinfection treatment on the phage community and its resistome.

View Article and Find Full Text PDF

Aquatic ecosystems in anthropogenically impacted areas are important reservoirs of antibiotic resistance genes (ARGs) of allochthonous origin. However, the dynamics of the different ARGs within the bacterial communities of lakes and rivers, as well as the factors that drive their selection, are not completely understood. In this study, we analysed the fate of the bacterial resistome (total content of ARGs and of metal resistance genes, MRGs) for a period of six months (summer-winter) in a continuum lake-river-lake system (Lake Varese, River Bardello, Lake Maggiore) in Northern Italy, by shotgun metagenomics.

View Article and Find Full Text PDF

Wastewater treatment plants are among the main hotspots for the release of antibiotic resistance genes (ARGs) into the environment. ARGs in treated wastewater can be found in the intracellular DNA (iDNA) and in the extracellular DNA (eDNA). In this study, we investigated the fate and the distribution (either in eDNA or in iDNA) of ARGs in the treated wastewaters pre and post-disinfection by shotgun metagenomics.

View Article and Find Full Text PDF

The impact of Fenton oxidation (FO) and Air stripping (AS) pre-treatments on the bacterial community of a biological activated sludge (B-AS) process for the co-treatment of mature landfill leachate (MLL) and urban wastewater (UWW) was assessed. In this work high-throughput sequencing was used to identify changes in the composition of the bacterial communities when exposed to different landfill leachate's pre-treatments. The combination of FO and AS to increase biodegradability (BOD/COD) and reduce ammonia concentration (NH) respectively, allowed to successfully operate the B-AS and effectively treat MLL.

View Article and Find Full Text PDF

This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e.

View Article and Find Full Text PDF

The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs.

View Article and Find Full Text PDF
Article Synopsis
  • Swine farms are identified as significant sources of antimicrobial resistance, risking the spread of antibiotic-resistant bacteria to the environment and farm workers.
  • A two-year study analyzed fecal samples from three groups of pigs (suckling piglets, weaning pigs, and fatteners) across six intensive farms, focusing on class 1 integrons and enterococci bacteria as indicators.
  • Results indicated that suckling piglets had notably higher levels of both class 1 integrons and enterococci, highlighting them as a critical stage for reducing the risk of antibiotic resistance transmission.*
View Article and Find Full Text PDF

Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotic usage can lead to the spread of antibiotic resistance genes (ARGs) in microbial communities, raising public health concerns due to the potential transmission among pathogens.
  • The origins and transmission routes of these ARGs, particularly from farms where antibiotics are used in animal husbandry, are still unclear, although studies indicate dairy farms are hotspots for high-risk ARGs.
  • The research highlights calves as significant contributors to ARG spread in dairy farms and suggests focused strategies to reduce ARG levels in this area of livestock production.
View Article and Find Full Text PDF

The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments.

View Article and Find Full Text PDF

Although abundant and chemically peculiar, tyre wear microplastic particles (TWP) and their impact on the microbial communities in water are largely understudied. We tested in laboratory based semi-continuous cultures the impact of TWP and of polyethylene terephthalate (PET) derived particles (following a gradient of relative abundance) on the pathobiome (the group of potential human pathogenic bacteria) of a freshwater microbial community exposed to contamination by the effluent of a urban wastewater treatment plant, for a period of 28 days. We could define the modulated impact of the two types of microplastic particles: while PET does not favour bacterial growth, it offers a refuge to several potential pathogens of allochthonous origin (from the treated sewage effluent), TWP act as an additional carbon source, promoting the development and the massive growth of a biofilm composed by fast-growing bacterial genera including species potentially harmful and competitive in abating biodiversity in surface waters.

View Article and Find Full Text PDF

Antibiotic resistance is a serious concern for public health. Farm environments are relevant reservoirs of antibiotic resistant bacteria and antibiotic resistance genes (ARGs), thus strategies to limit the spread of ARGs from farms to the environment are needed. In this study a broiler farm, where antibiotics have never been used for any purpose, was selected to evaluate if this measure is effective in reducing the ARGs load in farm environment (FE) and in meat processing environment (MPE).

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are among the main hotspots of antibiotic resistance genes (ARGs) in the environment. Previously, we demonstrated that, by increasing anthropogenic pollution, the antibiotic resistome persisted in the microbial community of rivers and lakes, independently by changes in community composition. In this study, we reanalysed the data to test for the relation of metal resistance genes (MRGs), plasmids, and integrons to the persistence of the antibiotic resistome.

View Article and Find Full Text PDF

The oceans are increasingly polluted with plastic debris, and several studies have implicated plastic as a reservoir for antibiotic resistance genes and a potential vector for antibiotic-resistant bacteria. Bioplastic is widely regarded as an environmentally friendly replacement to conventional petroleum-based plastic, but the effects of bioplastic pollution on marine environments remain largely unknown. Here, we present the first evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments.

View Article and Find Full Text PDF