High rates of metabolic risk factors contribute to premature mortality in patients with severe mental disorders, but the molecular underpinnings of this association are largely unknown. We performed the first analysis on shared genetic factors between severe mental disorders and metabolic traits considering the effect of sex. We applied an integrated analytical pipeline on the largest sex-stratified genome-wide association datasets available for bipolar disorder (BD), major depressive disorder (MDD), schizophrenia (SZ), and for body mass index (BMI) and waist-to-hip ratio (WHR) (all including participants of European origin).
View Article and Find Full Text PDFIntroduction: Discriminating bipolar disorder (BD) from major depressive disorder (MDD) remains a challenging clinical task. Identifying specific peripheral biosignatures that can differentiate between BD and MDD would significantly increase diagnostic accuracy. Dysregulated neuroplasticity is implicated in BD and MDD, and psychotropic medications restore specific disrupted processes by increasing neurotrophic signalling.
View Article and Find Full Text PDFPatients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci.
View Article and Find Full Text PDFLithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium.
View Article and Find Full Text PDFLithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores.
View Article and Find Full Text PDFLithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores.
View Article and Find Full Text PDFResponse to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients ( = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score.
View Article and Find Full Text PDFHum Genomics
October 2022
Background: It has been suggested that bipolar disorder (BD) is associated with clinical and biological features of accelerated aging. In our previous studies, we showed that long-term lithium treatment was correlated with longer leukocyte telomere length (LTL) in BD patients. A recent study explored the role of TL in BD using patients-derived lymphoblastoid cell lines (LCLs), showing that baseline TL was shorter in BD compared to controls and that lithium in vitro increased TL but only in BD.
View Article and Find Full Text PDFObjective: Circadian rhythm disruption is commonly observed in bipolar disorder (BD). Daylight is the most powerful signal to entrain the human circadian clock system. This exploratory study investigated if solar insolation at the onset location was associated with the polarity of the first episode of BD I.
View Article and Find Full Text PDFBackground: Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims: To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes.
View Article and Find Full Text PDFBackground: Potential interactions between mood disorders and microcytic anaemias have been suggested by case reports, surveys of haematological parameters in psychiatric populations, and surveys of psychiatric morbidity in thalassaemic carriers.
Objectives: a) To review published studies.b) To study the prevalence of microcytic anaemia in a sample of Sardinian outpatients with recurrent mood disorders.
Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region.
View Article and Find Full Text PDF