Publications by authors named "Raffaella Albano"

Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families).

View Article and Find Full Text PDF

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation.

View Article and Find Full Text PDF

In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation.

View Article and Find Full Text PDF

Background And Purpose: Doxorubicin anti-cancer therapy is associated with cardiotoxicity, resulting from DNA damage response (DDR). Hepatocyte growth factor (HGF) protects cardiomyocytes from injury, but its effective use is compromised by low biodistribution. In this study, we have investigated whether the activation of the HGF receptor-encoded by the Met gene-by an agonist monoclonal antibody (mAb) could protect against doxorubicin-induced cardiotoxicity.

View Article and Find Full Text PDF

Glioblastoma (GBM) contains stem-like cells (GSCs) known to be resistant to ionizing radiation and thus responsible for therapeutic failure and rapidly lethal tumor recurrence. It is known that GSC radioresistance relies on efficient activation of the DNA damage response, but the mechanisms linking this response with the stem status are still unclear. Here, we show that the MET receptor kinase, a functional marker of GSCs, is specifically expressed in a subset of radioresistant GSCs and overexpressed in human GBM recurring after radiotherapy.

View Article and Find Full Text PDF

The existence of treatment-resistant cancer stem cells contributes to the aggressive phenotype of glioblastoma. However, the molecular alterations that drive stem cell proliferation in these tumors remain unknown. In this study, we found that expression of the MET oncogene was associated with neurospheres expressing the gene signature of mesenchymal and proneural subtypes of glioblastoma.

View Article and Find Full Text PDF

Purpose: Targeting the c-Met receptor with monoclonal antibodies (MAbs) is an appealing approach for cancer diagnosis and treatment because this receptor plays a prominent role in tumour invasion and metastasis. Positron emission tomography (PET) might be a powerful tool for guidance of therapy with anti-Met MAbs like the recently described MAb DN30 because it allows accurate quantitative imaging of tumour targeting (immuno-PET). We considered the potential of PET with either (89)Zr-labelled (residualising radionuclide) or (124)I-labelled (non-residualising radionuclide) DN30 for imaging of Met-expressing tumours.

View Article and Find Full Text PDF