Publications by authors named "Raffaele d'Isa"

Intentional tactical deception, the employment of a tactic to intentionally deceive another animal, is a complex behaviour based on higher-order cognition, that has rarely been documented outside of primates and corvids. New laboratory-to-field assays, however, provide the opportunity to investigate such behaviour among free-living mice. In the present study, we placed laboratory-style test chambers with a single entrance near a forest outside Warsaw, where we observed the social interactions of two territorial murids, black-striped and yellow-necked mice, under food competition for seven months.

View Article and Find Full Text PDF

Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5.

View Article and Find Full Text PDF

Comparative psychology, in its narrow meaning, refers to the study of the similarities and differences in the psychology and behavior of different species. In a broader meaning, it includes comparisons between different biological and socio-cultural groups, such as species, sexes, developmental stages, ages, and ethnicities. This broader meaning originated by extension from the former narrow meaning, which historically was the original meaning of the phrase (interspecies psychological and behavioral comparisons) and which still today is the focus of the field.

View Article and Find Full Text PDF

The visual system is one of the most accessible routes to study the central nervous system under pathological conditions, such as in multiple sclerosis (MS). Non-invasive visual evoked potential (VEP) and optical coherence tomography (OCT) were used to assess visual function and neuroretinal thickness in C57BL/6 taking 0.2% cuprizone for 7 weeks and at 5, 8, 12, and 15 days after returning to a normal diet.

View Article and Find Full Text PDF

Female Dark Agouti rats were immunized with increasing doses of myelin oligodendrocyte glycoprotein (MOG) to develop experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis. Typical EAE motor impairments were assessed daily and noninvasive visual evoked potentials (VEPs) were recorded at baseline and 5 weeks after immunization, with final histopathology of optic nerves (ONs). Immunized rats exhibited a relapsing-remitting clinical course.

View Article and Find Full Text PDF

Background: Visual Evoked Potential (VEP) quantifies electrical signals produced in visual cortex in response to visual stimuli. VEP elicited by light flashes is a useful biomarker to evaluate visual function in preclinical models and it can be recorded in awake or anaesthetised state. Different types of anaesthesia influence VEP properties, such as latency, which measures the propagation speed along nerve fibers, and amplitude that quantifies the power of electrical signal.

View Article and Find Full Text PDF

Spatial working memory can be assessed in mice through the spontaneous alternation T-maze test. The T-maze is a T-shaped apparatus featuring a stem (start arm) and two lateral goal arms (left and right arms). The procedure is based on the natural tendency of rodents to prefer exploring a novel arm over a familiar one, which induces them to alternate the choice of the goal arm across repeated trials.

View Article and Find Full Text PDF

The hole-board test has been used in rodents since the early 60s to measure exploratory behavior, locomotor activity and cognitive function. The test is based on rodents' natural curiosity and attraction for novelty. Basically, the hole-board consists of a small square arena with an extractable platform as floor, which has a set of equally spaced circular holes on its surface.

View Article and Find Full Text PDF

Background: Experimental autoimmune encephalomyelitis (EAE) is a common animal model of multiple sclerosis (MS). C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein exhibit chronic disease course, together with optic neuritis, consisting of demyelination/axonal loss of the optic nerve.

Objectives: To characterize functional and structural visual damages in two different phases of EAE: pre- and post-motor onset.

View Article and Find Full Text PDF

Purpose: To develop a non-invasive method exploiting simultaneous recording of epidermal visual evoked potential (VEP) and epicorneal electroretinogram (ERG) to study retinocortical function and to evaluate its reliability and repeatability over time.

Methods: Female wild-type DA rats were anesthetized with ketamine/xylazine (40/5 mg/kg). Epidermal VEP (Ag/AgCl cup electrode on scalp) and epicorneal ERG (gold ring electrode on eye surface) were recorded simultaneously in response to flash stimulation.

View Article and Find Full Text PDF
Article Synopsis
  • - Experimental autoimmune encephalomyelitis (EAE) serves as a key model for studying multiple sclerosis (MS), showcasing similar symptoms such as inflammation, demyelination, and visual pathway disruptions.
  • - The study focused on using visual evoked potential (VEP) recordings in a specific rat model (dark agouti) to assess visual dysfunctions and monitor disease progression, revealing that VEP latency delays can occur before motor deficits, highlighting early inflammatory responses.
  • - Findings support the potential of VEPs as reliable biomarkers for evaluating new treatments targeting optic neuritis in MS, demonstrating significant visual involvement even in the absence of severe motor symptoms in advanced disease stages.
View Article and Find Full Text PDF

Purpose: Visual evoked potentials (VEPs) are used to assess visual function in preclinical models of neurodegenerative diseases. VEP recording with epidural screw electrodes is a common method to study visual function in rodents, despite being an invasive procedure that can damage the tissue under the skull. The present study was performed to test a semi-invasive (epicranial) and a non-invasive (epidermal) VEP recording technique, comparing them with the classic epidural acquisition method.

View Article and Find Full Text PDF

Dark-Agouti rats were immunized with spinal cord homogenate to develop Experimental Autoimmune Encephalomyelitis, a model of multiple sclerosis. We assessed motor signs and recorded VEPs for five or eight weeks with epidural or epidermal electrodes, respectively, with final histopathology of optic nerves (ONs). Injected rats exhibited motor deficits a week after immunization.

View Article and Find Full Text PDF

Purpose: Visual evoked potentials (VEPs) are a powerful tool to evaluate nervous conduction along the visual pathways, both in humans and in animal models. Traditionally, epidural screw electrodes are used to record VEPs in preclinical research. Here we tested the feasibility in the preclinical setting of the same noninvasive technique used for clinical VEP acquisition, by using epidermal cup electrodes with no surgical procedures.

View Article and Find Full Text PDF

Background: Dysregulation of Ras-extracellular signal-related kinase (ERK) signaling gives rise to RASopathies, a class of neurodevelopmental syndromes associated with intellectual disability. Recently, much attention has been directed at models bearing mild forms of RASopathies whose behavioral impairments can be attenuated by inhibiting the Ras-ERK cascade in the adult. Little is known about the brain mechanisms in severe forms of these disorders.

View Article and Find Full Text PDF

Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition.

View Article and Find Full Text PDF

The striatum is the input structure of the basal ganglia system. By integrating glutamatergic signals from cortical and subcortical regions and dopaminergic signals from mesolimbic nuclei the striatum functions as an important neural substrate for procedural and motor learning as well as for reward-guided behaviors. In addition, striatal activity is significantly altered in pathological conditions in which either a loss of dopamine innervation (Parkinson's disease) or aberrant dopamine-mediated signaling (drug addiction and L-DOPA induced dyskinesia) occurs.

View Article and Find Full Text PDF

Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus.

View Article and Find Full Text PDF

Type I mucopolysaccharidosis (MPS I) is a lysosomal storage disorder caused by the deficiency of α-L-iduronidase, which results in glycosaminoglycan accumulation in tissues. Clinical manifestations include skeletal dysplasia, joint stiffness, visual and auditory defects, cardiac insufficiency, hepatosplenomegaly, and mental retardation (the last being present exclusively in the severe Hurler variant). The available treatments, enzyme-replacement therapy and hematopoietic stem cell (HSC) transplantation, can ameliorate most disease manifestations, but their outcome on skeletal and brain disease could be further improved.

View Article and Find Full Text PDF