Publications by authors named "Raffaele Mori"

STAT3 is a pleiotropic transcription factor involved in homeostatic and host defense processes in the human body. It is activated by numerous cytokines and growth factors and generates a series of cellular effects. Of the STAT-mediated signal transduction pathways, STAT3 transcriptional control is best understood.

View Article and Find Full Text PDF

Actin and nuclear myosin 1c (NM1) cooperate in RNA polymerase I (pol I) transcription. NM1 is also part of a multiprotein assembly, B-WICH, which is involved in transcription. This assembly contains the chromatin remodeling complex WICH with its subunits WSTF and SNF2h.

View Article and Find Full Text PDF

Tyrosine phosphorylation is a hallmark for activation of STAT proteins, but their transcriptional activity also depends on other secondary modifications. Type I IFNs can activate both the ISGF3 (STAT1:STAT2:IRF9) complex and STAT3, but with cell-specific, selective triggering of only the ISGF3 transcriptional program. Following a genome-wide RNAi screen, we identified the SIN3 transcription regulator homolog A (Sin3a) as an important mediator of this STAT3-targeted transcriptional repression.

View Article and Find Full Text PDF

The antiviral and antiproliferative responses mediated by type I interferons (IFNs) depend on JAK/STAT signaling and ISGF3 (STAT1:STAT2:IRF9)-dependent transcription. In addition, type I IFNs stimulate STAT3 activation in many cell types, an event generally associated with cell cycle progression, survival, and proliferation. To gather more insight into this functionally contradictive phenomenon, we studied the regulation of STAT3 transcriptional activity upon type I IFN treatment.

View Article and Find Full Text PDF