Publications by authors named "Raffaele Landolfo"

Existing steel frames not complying with modern seismic codes are often vulnerable to earthquakes due to inadequate seismic detailing. These types of framed structures typically feature semi-rigid and partial strength column-base connections; the behaviour of such connections may significantly affect their seismic performance. However, current code provisions offer limited guidance for the assessment and retrofit of column-base connections To fill the knowledge gap, the H2020 EU-funded Earthquake Assessment of Base-Column Connections in Existing Steel Frames project experimentally investigated, the response of exposed column-base plate connections.

View Article and Find Full Text PDF

Industrial single-storey buildings are the most diffuse typology of steel construction located in Italy. Most of these existing buildings were erected prior to the enforcement of adequate seismic provisions; hence, crucial attention is paid nowadays to the design of low-impact retrofit interventions which can restore a proper structural performance without interrupting productive activities. Within this framework, an existing industrial single-storey steel building located in Nusco (Italy) is selected in this paper as a case-study.

View Article and Find Full Text PDF

Fatigue performance is often a key aspect when dealing with existing steel structures such as steel bridges or offshore constructions. This issue proves to be more critical as these structures are usually located in aggressive environments and are thus exposed to progressive degradation. Indeed, disruptive phenomena such as corrosion can severely worsen the fatigue performance of the steel components.

View Article and Find Full Text PDF

The seismic response of steel moment resisting frames (MRFs) is influenced by the behavior of joints. Within the ongoing research project "FUTURE"(Full-scale experimental validation of steel moment frame with EU qualified joints and energy efficient claddings under Near fault seismic scenarios), shake table tests will be carried out on a two-story one bay MRF equipped with different types of prequalified beam-to-column joints. In order to design the experimental campaign, preliminary numerical simulations have been carried out to predict the seismic performance of the experimental mock-up in terms of distribution of damage, transient and residual interstory drifts.

View Article and Find Full Text PDF