Philos Trans R Soc Lond B Biol Sci
March 2007
The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for the study of the evolution of modularity. It is argued that neural networks as a model of the nervous system and genetic algorithms as simulative models of biological evolution would allow us to formulate a clear and operative definition of module and to simulate the different evolutionary scenarios proposed for the origin of modularity. I will present a recent model in which the evolution of primate cortical visual streams is possible starting from non-modular neural networks.
View Article and Find Full Text PDFWhat genotypic features explain the evolvability of organisms that have to accomplish many different tasks? The genotype of behaviorally complex organisms may be more likely to encode modular neural architectures because neural modules dedicated to distinct tasks avoid neural interference, i.e. the arrival of conflicting messages for changing the value of connection weights during learning.
View Article and Find Full Text PDF