Delamination is a critical failure mode in power electronics packages that can significantly impact their reliability and performance, due to the large amounts of electrical power managed by the most recent devices which induce remarkable thermomechanical loads. The finite element (FE) simulation of this phenomenon is very challenging for the identification of the appropriate modeling tools and their subsequent calibration. In this study, we present an advanced FE modeling approach for delamination, together with fundamental guidelines to calibrate it.
View Article and Find Full Text PDFThe Ti6Al4V alloy is widely adopted in many high-end applications in different fields, including the aerospace, biomechanics, and automotive sectors. Additive manufacturing extends its range of possible applications but also introduces variations in its mechanical performance, depending on the whole manufacturing process and the related control parameters. This work focuses on the detailed tensile stress-strain characterization at low and high strain rates of a Grade 23 Ti alloy manufactured by electron beam melting (EBM).
View Article and Find Full Text PDF