Publications by authors named "Raffaela Barbano"

MicroRNAs are well established as master regulators of carcinogenesis and potential biomarkers in breast cancer (BC). In a preliminary effort, we found miR-27a-5p to be significantly downregulated in experimentally derived mammospheres and BC patients from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. Herein, we sought to investigate the putative involvement of miR-27a-5p in promoting a migratory phenotype of breast cancer cells, and establish whether miR-27a-5p is associated with patient clinicopathological characteristics.

View Article and Find Full Text PDF

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models.

View Article and Find Full Text PDF

While the molecular functions of miR-200 family have been deeply investigated, a role for these miRNAs as breast cancer biomarkers remains largely unexplored. In the attempt to clarify this, we profiled the miR-200 family members expression in a large cohort of breast cancer cases with a long follow-up (H-CSS cohort) and in TCGA-BRCA cohort. Overall, miR-200 family was found upregulated in breast tumors with respect to normal breast tissues while downregulated in more aggressive breast cancer molecular subtypes (i.

View Article and Find Full Text PDF

miR-155-5p is a well-known oncogenic microRNA, showing frequent overexpression in human malignancies, including breast cancer. Here, we show that high miR-155-5p levels are associated with unfavorable prognostic factors in two independent breast cancer cohorts (CSS cohort, = 283; and TCGA-BRCA dataset, = 1,095). Consistently, miR-155-5p results as differentially expressed in the breast cancer subgroups identified by the surrogate molecular classification in the CSS cohort and the PAM50 classifier in TCGA-BRCA dataset, with the TNBC and -amplified tumors carrying the highest levels.

View Article and Find Full Text PDF

Transforming growth factor β (TGF-β) superfamily signaling pathways are ubiquitous and essential for several cellular and physiological processes. The overexpression of TGF-β results in excessive fibrosis in multiple human disorders. Among them, stiff skin syndrome (SSS) is an ultrarare and untreatable condition characterized by the progressive thickening and hardening of the dermis, and acquired joint limitations.

View Article and Find Full Text PDF

Members of the carbonic anhydrase family are functionally involved in the regulation of intracellular and extracellular pH in physiological and pathological conditions. Their expression is finely regulated to maintain a strict control on cellular homeostasis, and it is dependent on the activation of extracellular and intracellular signaling pathways. Combining RNA sequencing (RNA-seq), NanoString, and bioinformatics data, we demonstrated that the expression of carbonic anhydrase 12 (CAXII) is significantly different in luminal and triple negative breast cancer (BC) models and patients, and is associated with the activation of an epithelial mesenchymal transition (EMT) program.

View Article and Find Full Text PDF

Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene in colorectal cancer (CRC) patients. A Kaplan-Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of .

View Article and Find Full Text PDF

MicroRNA-210-3p is the most prominent hypoxia regulated microRNA, and it has been found significantly overexpressed in different human cancers. We performed the expression analysis of miR-210-3p in a retrospective cohort of breast cancer patients with a median follow-up of 76 months (n = 283). An association between higher levels of miR-210-3p and risk of disease progression (HR: 2.

View Article and Find Full Text PDF

In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Background: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis.

Methods: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis.

View Article and Find Full Text PDF

In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis.

View Article and Find Full Text PDF

miR-9 was initially identified as an epigenetically regulated miRNA in tumours, but inconsistent findings have been reported so far. We analysed the expression of miR-9-5p, miR-9-3p, pri-miRs and MIR9 promoters methylation status in 131 breast cancer cases and 12 normal breast tissues (NBTs). The expression of both mature miRs was increased in tumours as compared to NBTs (P < 0.

View Article and Find Full Text PDF

BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients' samples by Cast-PCR and bidirectional direct sequence analysis.

View Article and Find Full Text PDF

Background: Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma.

View Article and Find Full Text PDF

Gliomas represent a disparate group of tumours for which there are to date no cure. Thus, there is a recognized need for new diagnostic and therapeutic approaches based on increased understanding of their molecular nature. We performed the comparison of the microRNA (miRNA) profile of 8 WHO grade II gliomas and 24 higher grade tumours (2 WHO grade III and 22 glioblastomas) by using the Affymetrix GeneChip miRNA Array v.

View Article and Find Full Text PDF

Background: MicroRNA-10b (miR-10b) has a prominent role in regulating tumor invasion and metastasis by targeting the HOXD10 transcriptional repressor and has been found up-regulated in several tumor types.

Methods: We evaluated the expression of miR-10b in paired tumor and normal specimens obtained from a prospective cohort of breast cancer patients with at least 36 months follow-up enrolled according to the REMARK guidelines (n = 150). RNA quality was measured and only samples with RNA Integrity Number (RIN) ≥7.

View Article and Find Full Text PDF

Keap1 (Kelch-like ECH-associated protein 1) is an adaptor protein that mediates the ubiquitination/degradation of genes regulating cell survival and apoptosis under oxidative stress conditions. We determined methylation status of the KEAP1 promoter in 102 primary breast cancers, 14 pre-invasive lesions, 38 paired normal breast tissues and 6 normal breast from reductive mammoplasty by quantitative methylation specific PCR (QMSP). Aberrant promoter methylation was detected in 52 out of the 102 primary breast cancer cases (51%) and 10 out of 14 pre-invasive lesions (71%).

View Article and Find Full Text PDF

Disturbances in the epigenetic landscape by aberrant methylation of CpG islands can lead to inactivation of cancer-related genes in solid tumors. We analyzed the promoter methylation status of 6 genes previously reported as cancer-specific methylated (MCAM, SSBP2, NISCH, B4GALT1, KIF1A and RASSF1A) in 38 neural crest-derived tumors by quantitative methylation-specific real-time PCR (QMSP). The results demonstrated that the determination of the methylation status of RASSF1A is able to distinguish between normal and tumor samples in cutaneous melanomas, lung carcinoids and small bowel carcinoids.

View Article and Find Full Text PDF

Purpose: To evaluate the involvement of Visual System Homeobox 1 (VSX1), Secreted Protein Acidic and Rich in Cysteine (SPARC), Superoxide Dismutase 1 (SOD1), Lysyl Oxidase (LOX), and Tissue Inhibitor of Metalloproteinase 3 (TIMP3) in sporadic and familial keratoconus.

Methods: Mutational analysis of the five genes was performed by sequencing and fragment analysis in a large cohort of 302 Italian patients, with a diagnosis of keratoconus based on clinical examination and corneal topography. The variants identified in VSX1 and SPARC were also assessed in the available relatives of the probands.

View Article and Find Full Text PDF

Background And Aim: The mechanisms of hepatocarcinogenesis induced by hepatitis C virus remain unclear. Our aim was to investigate the effect of the HCV core protein on the promoter methylation status of selected genes potentially involved in the hepatocellular carcinoma (HCC).

Materials And Methods: We evaluated the promoter methylation levels of the E-cadherin (CDH1), the glutathione S-transferase p1 (GSTP1), adenomatosis polyposis coli (APC), tissue inhibitor of metalloproteinase 3 (TIMP3), catenin (cadherin-associated protein) beta 1 (CNNTB1) genes by a quantitative methylation-specific polymerase chain reaction (QMSP) in the in vitro model of Huh-7 cells expressing the HCV core protein of genotype 1b.

View Article and Find Full Text PDF
Article Synopsis
  • The KEAP1/Nrf2 pathway helps tumor cells resist chemotherapy by affecting certain genes.
  • A study looked at lung cancer tissues and found that changes in the KEAP1 gene, like mutations and methylation, were common in tumors but not in normal tissues.
  • These changes could indicate a higher risk of cancer worsening, and knowing about them might help doctors predict how patients will respond to treatment.
View Article and Find Full Text PDF

In light with the view that KEAP1 loss of function may impact tumour behavior and modify response to chemotherapeutical agents, we sought to determine whether KEAP1 gene is epigenetically regulated in malignant gliomas. We developed a Quantitative Methylation Specific PCR (QMSP) assay to analyze 86 malignant gliomas and 20 normal brain tissues. The discriminatory power of the assay was assessed by Receiving Operating Characteristics (ROC) curve analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how certain genes that help fix DNA breaks might be involved in breast cancer, especially in people without a family history of it.
  • They found that one gene called RAD51 was more active in some types of breast tumors, especially those that are positive for estrogen but negative for progesterone.
  • The study suggests that checking RAD51 levels could help doctors better understand and treat breast cancer in patients.
View Article and Find Full Text PDF

Aberrant promoter methylation of several known or putative tumor suppressor genes occurs frequently during carcinogenesis, and this epigenetic change has been considered as a potential molecular marker for cancer. We examined the methylation status of nine genes (APC, CDH1, CTNNB1, TIMP3, ESR1, GSTP1, MGMT, THBS1, and TMS1), by quantitative methylation specific PCR. Synchronous preinvasive lesions (atypical ductal hyperplasia and/or ductal carcinoma in situ) and invasive ductal breast carcinoma from 52 patients, together with pure lesions from 24 patients and 12 normal tissues paired to tumor and 20 normal breast distant from tumor were analyzed.

View Article and Find Full Text PDF