Publications by authors named "Rafel Socias I Company"

Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed.

View Article and Find Full Text PDF

Almond is the most important nut species worldwide and almond kernels show the highest levels of tocopherols among all nuts. In almond, tocopherols not only play a substantial role as a healthy food for human consumption, but also in protecting lipids against oxidation and, thus, lengthening the storage time of almond kernels. The main tocopherol homologues detected in almond in decreasing content and biological importance are α-, γ-, δ-, and β-tocopherol.

View Article and Find Full Text PDF

Almond kernels are a rich source of phytosterols, which are important compounds for human nutrition. The genetic control of phytosterol content has not yet been documented in almond. Association mapping (AM), also known as linkage disequilibrium (LD), was applied to an almond germplasm collection in order to provide new insight into the genetic control of total and individual sterol contents in kernels.

View Article and Find Full Text PDF

Self-compatibility in almond (Prunus dulcis) is attributed to the presence of the S f haplotype, allelic to and dominant over the series of S-alleles controlling self-incompatibility. Some forms of the S f haplotype, however, are phenotypically self-incompatible even though their nucleotide sequences are identical. DNA from leaves and styles from genetically diverse almond samples was cloned and sequenced and then analyzed for changes affecting S f -RNase variants.

View Article and Find Full Text PDF

Background: Allelic diversity of the S-locus is attributed to the genetic relationships among genotypes and sexual reproduction strategy. In otherwise self-incompatible Prunus species, the emergence of loss-of-function in S-haplotypes has resulted in self-compatibility. This information may allow following major stages of crop history.

View Article and Find Full Text PDF

Although pollen tube growth has been an important criterion for self-compatibility evaluation in almond, there is not a clear-cut separation between positive and negative growth of pollen tubes in the different genotypes. The examination of pollen tube growth after selfing almond seedlings has allowed establishing different levels of compatibility, but not a clear-cut separation between self-compatible (SC) and self-incompatible (SI) genotypes, related to the presence of pseudo-self-compatibility in almond. Consequently, a relationship between pollen tube growth and self-compatibility in almond may be established for evaluating the seedlings in breeding programs.

View Article and Find Full Text PDF

Gametophytic self-incompatibility (GSI) is a mechanism in flowering plants, to prevent inbreeding and promote outcrossing. GSI is under the control of a specific locus, known as the S-locus, which contains at least two genes, the RNase and the SFB. Active S-RNases in the style are essential for rejection of haploid pollen, when the pollen S-allele matches one of two S-alleles of the diploid pistil.

View Article and Find Full Text PDF

Background: Almond breeding is increasingly taking into account kernel quality as a breeding objective. Information on the parameters to be considered in evaluating almond quality, such as protein and oil content, as well as oleic acid and tocopherol concentration, has been recently compiled. The genetic control of these traits has not yet been studied in almond, although this information would improve the efficiency of almond breeding programs.

View Article and Find Full Text PDF

The concentration of the different tocopherol homologues in almond kernel oil was determined in 17 almond cultivars grown in two different experimental orchards, in Spain and Morocco. The three main homologues showed a large variability, ranging from 210.9 to 553.

View Article and Find Full Text PDF

Self-compatibility has become the primary objective of most almond (Prunus amygdalus Batsch) breeding programmes in order to avoid the problems related to the gametophytic self-incompatibility system present in almond. The progeny of the cross 'Vivot' (S(23)S(fa)) x 'Blanquerna' (S(8)S(fi)) was studied because both cultivars share the same S(f) allele but have a different phenotypic expression: active (S(fa)) in 'Vivot' and inactive (S(fi)) in 'Blanquerna'. In addition, the microscopic observation of pollen tube growth after self-pollination over several years showed an unexpected self-incompatible behaviour in most seedlings of this cross.

View Article and Find Full Text PDF

The increasing utilization of self-compatible almond cultivars in solid plantings of a single genotype has raised the question of the effect of the pollen source on the kernel quality of these new autogamous cultivars. Thus, the effect of two different pollen sources, in addition to their own pollen, on the oil content and fatty acid and tocopherol concentrations was studied in four autogamous almond genotypes. The oil content was not affected by the pollination treatment, but self-pollination resulted in significantly higher values for oleic acid.

View Article and Find Full Text PDF