Publications by authors named "Rafeeh Dinani"

Embryonic signaling pathways exert stage-specific effects during cardiac development, yet the precise signals for proliferation or maturation remain elusive. To uncover the cues for proliferation, we performed a combinatory cell-cycle screen for insulin and glycogen synthase kinase-3 (GSK3) inhibition in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our analysis for proliferation, and subsequential downstream sarcomere development, gene expression analysis, and molecular interventions identified a temporal interplay between insulin/Akt/FOXO and CHIR99021/Wnt/GSK3/TCF signaling.

View Article and Find Full Text PDF

Aims: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, often caused by pathogenic sarcomere mutations. Early characteristics of HCM are diastolic dysfunction and hypercontractility. Treatment to prevent mutation-induced cardiac dysfunction is lacking.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a powerful tool for studying mutation-mediated changes in cardiomyocyte function and defining the effects of stressors and drug interventions. In this study, it is demonstrated that this optics-based system is a powerful tool to assess the functional parameters of hiPSC-CMs in 2D. By using this platform, it is possible to perform paired measurements in a well-preserved temperature environment on different plate layouts.

View Article and Find Full Text PDF

Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have emerged as a powerful tool for disease modeling, though their immature nature currently limits translation into clinical practice. Maturation strategies increasingly pay attention to cardiac metabolism because of its pivotal role in cardiomyocyte development and function. Moreover, aberrances in cardiac metabolism are central to the pathogenesis of cardiac disease.

View Article and Find Full Text PDF