Publications by authors named "Rafal Pelka"

The influence of a magnesium oxide admixture on the activation process and catalytic activity of the iron catalyst with a wustite structure was investigated during the ammonia synthesis reaction. The incorporation of magnesium oxide into wustite grains is considered to be a structure-forming and activating promoter. It stabilizes the α-Fe structure and increases the activity of the catalysts in the ammonia synthesis reaction.

View Article and Find Full Text PDF

In the present work, a simplified model of the Fe(111) surface's promoter-oxide system was investigated in order to experimentally verify the previously proposed and known models concerning the structure and chemical composition of the surfaces of iron nanocrystallites in the ammonia-synthesis catalyst. It was shown that efficient oxygen diffusion from metal oxides to the clean Fe(111) iron surface took place even at temperatures lower than 100 °C. The effective wetting of the iron surface by potassium oxide is possible when the surface is covered with oxygen at temperatures above 250 °C.

View Article and Find Full Text PDF

The kinetics of nanocrystalline α-iron nitriding to γ'-iron nitride in an ammonia atmosphere was studied at 598-648 K and at atmospheric pressure. Oscillatory changes in nitriding reaction rates depending on nitrogen concentration in a solid sample were observed. This phenomenon was explained by a gradual change in the iron active surface coverage degree, with nitrogen resulting from a gradual change in the free enthalpy of nitrogen segregation.

View Article and Find Full Text PDF

Iron catalysts for ammonia synthesis/nanocrystalline iron promoted with oxides of potassium, aluminum and calcium were characterized by studying the nitriding process with ammonia in kinetic area of the reaction at temperature of 475 °C. Using the equations proposed by Crank, it was found that the process rate is limited by diffusion through the interface, and the estimated value of the nitrogen diffusion coefficient through the boundary layer is 0.1 nm/s.

View Article and Find Full Text PDF

Promoted nanocrystalline iron was nitrided in a differential reactor equipped with systems that made it possible to conduct both thermogravimetric measurements and hydrogen concentration analyses in the reacting gas mixture. The nitriding process, particularly catalytic ammonia decomposition reaction, was investigated under an atmosphere of ammonia-hydrogen mixtures, under atmospheric pressure. Ammonia concentrations, and so nitriding potentials, were changed gradually from 0 to 100% at the inlet of reactor.

View Article and Find Full Text PDF