Publications by authors named "Rafal Gutaker"

Crops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas.

View Article and Find Full Text PDF

Herbaria are undergoing a renaissance as valuable sources of genomic data for exploring plant evolution, ecology, and diversity. Ancient DNA retrieved from herbarium specimens can provide unprecedented glimpses into past plant communities, their interactions with biotic and abiotic factors, and the genetic changes that have occurred over time. Here, we highlight recent advances in the field of herbarium genomics and discuss the challenges and opportunities of combining data from modern and time-stamped historical specimens.

View Article and Find Full Text PDF

The wild relatives of rice hold unexplored genetic diversity that can be employed to feed an estimated population of 10 billion by 2050. The Oryza Map Alignment Project (OMAP) initiated in 2003 has provided comprehensive genomic resources for comparative, evolutionary, and functional characterization of the wild relatives of rice, facilitating the cloning of >600 rice genes, including those for grain width (GW5) and submergence tolerance (SUB1A). Following in the footsteps of the original project, the goal of 'IOMAP: the Americas' is to investigate the present and historic genetic diversity of wild Oryza species endemic to the Americas through the sequencing of herbaria and in situ specimens.

View Article and Find Full Text PDF

We can increase the stability of our food systems against environmental variability and climate change by following the footsteps of our ancestors and domesticating edible wild plants. Reinforced by recent advances in comparative genomics and gene editing technologies, neodomestication opens possibilities for a rapid generation of new crops. By starting the candidate selection pipeline with climatic parameters, we orient neodomestication efforts to increase food security against climate change.

View Article and Find Full Text PDF
Article Synopsis
  • * Research utilizing whole-genome sequencing and archaeological data reveals that japonica rice in the northern Philippines diverged from Indonesian landraces around 3,500 years ago, while Taiwanese rice shows complex origins involving admixture from both temperate and tropical japonica strains.
  • * The study indicates that the temperate japonica rice in Taiwan separated from northeast Asian populations about 2,600 years ago, and trade networks across the South China Sea enhanced gene flow from the northern Philippines, highlighting local adaptation
View Article and Find Full Text PDF

The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P.

View Article and Find Full Text PDF

The ability to sequence DNA retrieved from ancient and historical material plays a crucial role in reinforcing evolutionary and anthropological inference. While the focus of the field is largely on analyzing DNA from ancient hominids and other animals, we have also learned from plant ancient DNA (aDNA), in particular, about human farming practices, crop domestication, environment management, species invasion, and adaptation to various environmental conditions. In the following protocols, we outline best practices for plant aDNA isolation, preparation for sequencing, bioinformatic processing, and authentication.

View Article and Find Full Text PDF

Rice (Oryza sativa) is one of the world's most important food crops, and is comprised largely of japonica and indica subspecies. Here, we reconstruct the history of rice dispersal in Asia using whole-genome sequences of more than 1,400 landraces, coupled with geographic, environmental, archaeobotanical and paleoclimate data. Originating around 9,000 yr ago in the Yangtze Valley, rice diversified into temperate and tropical japonica rice during a global cooling event about 4,200 yr ago.

View Article and Find Full Text PDF

Potato, one of the most important staple crops, originates from the highlands of the equatorial Andes. There, potatoes propagate vegetatively via tubers under short days, constant throughout the year. After their introduction to Europe in the sixteenth century, potatoes adapted to a shorter growing season and to tuber formation under long days.

View Article and Find Full Text PDF

While the domestication history of Asian rice has been extensively studied, details of the evolution of African rice remain elusive. The inner Niger delta has been suggested as the center of origin but molecular data to support this hypothesis is lacking. Here, we present a comprehensive analysis of the evolutionary and domestication history of African rice.

View Article and Find Full Text PDF

After domestication in the Near East around 10,000 years ago several founder crops, flax included, spread to European latitudes. On reaching northerly latitudes the architecture of domesticated flax became more suitable to fiber production over oil, with longer stems, smaller seeds and fewer axillary branches. Latitudinal adaptations in crops typically result in changes in flowering time, often involving the PEBP family of genes that also have the potential to influence plant architecture.

View Article and Find Full Text PDF

Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana.

View Article and Find Full Text PDF

By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest.

View Article and Find Full Text PDF

Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, , in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African , we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples.

View Article and Find Full Text PDF

DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths.

View Article and Find Full Text PDF

Improved understanding of ancient DNA (aDNA) biochemical properties coupled with application of next generation sequencing (NGS) methods enabled sequencing and authenticating genomes of historical samples. This advancement ignited a revolution in plant evolutionary genomics by allowing direct observations of past molecular diversity. Analyses of genomes sequenced from temporally distributed samples of Gossypium sp.

View Article and Find Full Text PDF

The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment.

View Article and Find Full Text PDF

Our understanding of the evolution of domestication has changed radically in the past 10 years, from a relatively simplistic rapid origin scenario to a protracted complex process in which plants adapted to the human environment. The adaptation of plants continued as the human environment changed with the expansion of agriculture from its centres of origin. Using archaeogenomics and computational models, we can observe genome evolution directly and understand how plants adapted to the human environment and the regional conditions to which agriculture expanded.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona7g42cr5sj4cmlkobbtcpagdu6v08n27): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once