Herein, we report a profound investigation of the photophysical properties of three mononuclear Ir(III) complexes (Hdppm-4,6-bis(4-(-butyl)phenyl)pyrimidine), (-acetylacetonate), and (Hppy-phenylpyridine). The heteroleptic is found to emit with efficiency above 80% and feature a remarkably high rate of emission. As measured under ambient temperature, emits with the unusually short (sub-μs) radiative decay time of τ = τ/Φ = 1/ = 0.
View Article and Find Full Text PDFThe device performance is reported for three compounds which show both thermally activated delayed fluorescence and liquid crystallinity, and use the donor 3,6-bis(3,4-didodecyloxyphenyl)carbazole. Two of the compounds, whose photophysics were reported previously, are based on a terephthalonitrile acceptor. A third and new compound is based on an isophthalonitrile acceptor and shows a more temperature-accessible mesophase and enhanced solution emission quantum yield.
View Article and Find Full Text PDFThe knowledge pertaining to the chemistry and biological activity of glycol nucleic acid (GNA) components, like nucleosides and nucleotides, is still very limited. Herein we report on the preparation of the uracil nucleoside (1) and nucleotide ester GNA (2). The compounds are functionalised with a luminescent phenanthrenyl group.
View Article and Find Full Text PDFMononuclear copper(I) complexes [CuL]I (1), [CuL][CuI]·2MeCN (2) and [CuL]PF (3) with a new chelating pyrazolylpyrimidine ligand, 2-(3,5-dimethyl-1-pyrazol-1-yl)-4,6-diphenylpyrimidine (L), were synthesized. In the structures of complex cations [CuL], Cu ions coordinate two L molecules (,-chelating coordination). Extended π-systems of the L molecules in [CuL] favor the formation of paired π-π stacking intramolecular interactions between the pyrimidine and phenyl rings leading to significant distortions of tetrahedral coordination cores, CuN.
View Article and Find Full Text PDFA dinuclear iridium(III) complex shows dual emission consisting of near infrared (NIR) phosphorescence (λ = 714 nm, CHCl, = 300 K) and green fluorescence (λ = 537 nm). The NIR emission stems from a triplet state (T) localized on the ditopic bridging ligand (LC). Because of the dinuclear molecular structure, the phosphorescence efficiency (Φ = 3.
View Article and Find Full Text PDFGreen-emitting water-soluble amino-ketoenole dye AmyGreen is proposed as an efficient fluorescent stain for visualization of bacterial amyloids in biofilms and the detection of pathological amyloids in vitro. This dye is almost non-fluorescent in solution, displays strong green emission in the presence of amyloid fibril of proteins. AmyGreen is also weakly fluorescent in presence to biomolecules that are components of cells, extracellular matrix or medium: nucleic acids, polysaccharides, lipids, and proteins.
View Article and Find Full Text PDFCoumarin was reported ( Signore et al., , 2010 , 132 , 1276 and Brancato et al., , 2015 , 119 , 6144 ) to break Kasha's rule.
View Article and Find Full Text PDFGlycol nucleic acids (GNA) are synthetic genetic-like polymers with an acyclic three-carbon propylene glycol phosphodiester backbone. Here, synthesis, luminescence properties, circular dichroism (CD) spectra, and confocal microscopy speciation studies of (R,S) and (S,R) pyrenyl-GNA (pyr-GNA) nucleosides are reported in HeLa cells. Enantiomerically pure nucleosides were obtained by a Sharpless asymmetric dihydroxylation reaction followed by semi-preparative high-performance liquid chromatography (HPLC) separation using Amylose-2 as the chiral stationary phase.
View Article and Find Full Text PDFA highly emissive Ag(i) complex comprising 2,9-dimethyl-1,10-phenanthroline (dmp) and bis[(2-diphenylphosphino)phenyl] ether (dpep) ligands was synthesized, characterized and investigated for its photophysical properties both experimentally and theoretically. The material exhibits intense phosphorescence from the triplet state of ligand centered (3LC) character featuring an unprecedented long lifetime of τ = 110 ms and a quantum yield of ΦPL = 50%, as measured for a doped PMMA matrix under ambient conditions. This is an efficient yet exceptionally slow emission decay, breaking the previous record by several orders of magnitude.
View Article and Find Full Text PDFThree series of pentamethylcyclopentadienyl (Cp*) Ir(III) complexes with different bidentate ligands were synthesized and structurally characterized, [Cp*Ir(tpy)L] (tpy = 2-tolylpyridinato; n = 0 or 1), [Cp*Ir(piq)L] (piq = 1-phenylisoquinolinato; n = 0 or 1), and [Cp*Ir(bpy)L] (bpy = 2,2'-bipyridine; m = 1 or 2), featuring a range of monodentate carbon-donor ligands within each series [L = 2,6-dimethylphenylisocyanide; 3,5-dimethylimidazol-2-ylidene (NHC); methyl)]. The spectroscopic and photophysical properties of these molecules and those of the photocatalyst [Cp*Ir(bpy)H] were examined to establish electronic structure-photophysical property relationships that engender productive photochemical reactivity of this hydride and its methyl analogue. The Ir(III) chromophores containing ancillary CNAr ligands exhibited features anticipated for predominantly ligand-centered (LC) excited states, and analogues bearing the NHC ancillary exhibited properties consistent with LC excited states containing a small admixture of metal-to-ligand charge-transfer (MLCT) character.
View Article and Find Full Text PDFThe temperature dependence (1.7 K < T < 100 K) of emission decay is reported for the first time for a type of di-nuclear Pt complex featuring a metal-metal-to-ligand charge transfer (MMLCT) lowest energy transition that arises from a strong Pt-Pt interaction. The effect of local variation of the host/guest cage in a polymer matrix upon the phosphorescence decay time constants is characterized by the Kohlrausch-Williams-Watts function.
View Article and Find Full Text PDFA highly potent donor-acceptor biaryl thermally activated delayed fluorescence (TADF) dye is accessible by a concise two-step sequence employing two-fold Ullmann arylation and a sequentially Pd-catalyzed Masuda borylation-Suzuki arylation (MBSA). Photophysical investigations show efficient TADF at ambient temperature due to the sterical hindrance between the donor and acceptor moieties. The photoluminescence quantum yield amounts to Φ = 80% in toluene and 90% in PMMA arising from prompt and delayed fluorescence with decay times of 21 ns and 30 μs, respectively.
View Article and Find Full Text PDFFluorescent pyrene-linker-nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene-C(O)CHCH-thymine () conjugate reveals dimers of molecules stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds.
View Article and Find Full Text PDFThe development of organic light emitting diodes (OLEDs) and the use of emitting molecules have strongly stimulated scientific research of emitting compounds. In particular, for OLEDs it is required to harvest all singlet and triplet excitons that are generated in the emission layer. This can be achieved using the so-called triplet harvesting mechanism.
View Article and Find Full Text PDFThe four new Ag(I) complexes Ag(phen)(P-nCB) (1), Ag(idmp)(P-nCB) (2), Ag(dmp)(P-nCB) (3), and Ag(dbp)(P-nCB) (4) with P-nCB = bis(diphenylphosphine)-nido-carborane, phen = 1,10-phenanthroline, idmp = 4,7-dimethyl-1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, and dbp = 2,9-di-n-butyl-1,10-phenanthroline were designed to demonstrate how to develop Ag(I) complexes that exhibit highly efficient thermally activated delayed fluorescence (TADF). The substituents on the 1,10-phenanthroline ligand affect the photophysical properties strongly (i) electronically via influencing the radiative rate of the S → S transition and (ii) structurally by rigidifying the molecular geometry with respect to geometry changes occurring in the lowest excited S and T states. The oscillator strength of the S ↔ S transition f(S ↔ S)-an important parameter for the TADF efficiency being proportional to the radiative rate-can be increased from f(S ↔ S) = 0.
View Article and Find Full Text PDFTwo new neutral -[Re(CO)₃(phen)L] compounds (,), with phen = 1,10-phenanthroline and L = O₂C(CH₂)₅CH₃ or O₂C(CH₂)₄C≡CH, were synthetized in one-pot procedures from -[Re(CO)₃(phen)Cl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, ¹H- and C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria.
View Article and Find Full Text PDFPhotophysical properties of four new platinum(II) complexes comprising extended ppy (Hppy = 2-phenylpyridine) and thpy (Hthpy = 2-(2'-thienyl)pyridine) cyclometalated ligands and acetylacetonate (acac) are reported. Substitution of the benzene ring of Pt-ppy complexes 1 and 2 with a more electron-rich thiophene of Pt-thpy complexes 3 and 4 leads to narrowing of the HOMO-LUMO gap and thus to a red shift of the lowest energy absorption band and phosphorescence band, as expected for low-energy excited states of the intraligand/metal-to-ligand charge transfer character. However, in addition to these conventional spectral shifts, another, at first unexpected, substitution effect occurs.
View Article and Find Full Text PDFA comparison of three copper(I) compounds [1, Cu(dppb)(pz2Bph2); 2, Cu(pop)(pz2Bph2); 3, Cu(dmp)(phanephos)(+)] that show pronounced thermally activated delayed fluorescence (TADF) at ambient temperature demonstrates a wide diversity of emission behavior. In this study, we focus on compound 1. A computational density functional theory (DFT)/time-dependent DFT approach allows us to predict detailed photophysical properties, while experimental emission studies over a wide temperature range down to T = 1.
View Article and Find Full Text PDFThree novel diferrocenyl complexes were prepared and characterised. 2,2-Diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran (1, sulphide) was accessible by the hetero-Diels-Alder reaction of diferrocenyl thioketone with 2,3-dimethyl-1,3-butadiene. Stepwise oxidation of 1 gave the respective oxides 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1-oxide (2, sulfoxide) and 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1,1-dioxide (3, sulfone), respectively.
View Article and Find Full Text PDFA series of three Pt(II) complexes with a doubly cyclometalating terdentate ligand L1, L1H2 = 3,6-bis(p-anizolyl)-2-carboranyl-pyridine, and diethyl sulfide (1), triphenylphosphine (2), and t-butylisonitrile (3) as ancillary ligands were synthesized. X-ray diffraction studies of 1 and 2 show a coordination of the L1 ligand in a C-N-C mode in which the bulky and rigid o-carborane fragment is cyclometalated via a C atom. Importantly, no close intermolecular Pt-Pt contacts occur with this ligand type.
View Article and Find Full Text PDFA detailed examination was performed on photophysical properties of phosphorescent cyclometalated (C(^)N)Pt(O(^)O) complexes (ppy)Pt(dpm) (1), (ppy)Pt(acac) (1'), and (bzq)Pt(dpm) (2) and newly synthesized (dbq)Pt(dpm) (3) (C(^)N = 2-phenylpyridine (ppy), benzo[h]quinoline (bzq), dibenzo[f,h]quinoline (dbq); O(^)O = dipivolylmethanoate (dpm), acetylacetonate (acac)). Compounds 1, 1', 2, and 3 were further characterized by single crystal X-ray diffraction. Structural changes brought about by cyclometalation were determined by comparison with X-ray data from model C(^)N ligand precursors.
View Article and Find Full Text PDFThe rigid [Cu(dmp)(phanephos)](+) complex displays a high luminescence quantum yield of 80% at ambient temperature. In contrast to the long-lived phosphorescence of 240 μs at T < 120 K with a radiative rate of k(r) = 3 × 10(3) s(-1), the ambient-temperature emission represents a thermally activated delayed fluorescence (DF) with a decay time of only 14 μs and a radiative rate of k(r)(DF) = 6 × 10(4) s(-1). Evidence for the involvement of the excited singlet state in the emission process is presented.
View Article and Find Full Text PDFComplex [Au{4-C(6)F(4)(4-C(6)BrF(4))}(tht)] reacts with diphosphines (L-L) such as bis(diphenylphosphino)methane (dppm) or 1,2-bis(diphenylphosphino)benzene (dppb) in a 2 : 1 molar ratio in dichloromethane, leading to neutral products of stoichiometry [(Au{4-C(6)F(4)(4-C(6)BrF(4))})(2)(μ-L-L)] (L-L = dppm (1), dppb (2)). In the crystal structure of complex 2 short Au···Au interactions of 2.9367(5) and 2.
View Article and Find Full Text PDFThe binuclear cyclometalated complexes [Pt(2)Me(2)(ppy)(2)(μ-dppm)], 1a, and [Pt(2)Me(2)(bhq)(2)(μ-dppm)], 1b, in which ppy = 2-phenylpyridyl, bhq = benzo{h}quinoline and dppm = bis(diphenylphosphino)methane, were synthesized by the reaction of [PtMe(SMe(2))(ppy)] or [PtMe(SMe(2))(bhq)] with 1/2 equiv of dppm at room temperature, respectively. Complexes 1a and 1b were fully characterized by multinuclear ((1)H, (31)P, (13)C, and (195)Pt) NMR spectroscopy and were further identified by single crystal X-ray structure determination. A comparison of the intramolecular Pt-Pt and π-π interactions in complexes 1a and 1b has been made on the basis of data on crystal structures and wave functions analysis.
View Article and Find Full Text PDFStrongly luminescent neutral copper(I) complexes of the type Cu(pop)(NN), with pop = bis(2-(diphenylphosphanyl)phenyl)ether and NN = bis(pyrazol-1-yl)borohydrate (pz(2)BH(2)), tetrakis(pyrazol-1-yl)borate (pz(4)B), or bis(pyrazol-1-yl)-biphenyl-borate (pz(2)Bph(2)), are readily accessible in reactions of Cu(acetonitrile)(4)(+) with equimolar amounts of the pop and NN ligands at ambient temperature. All products were characterized by means of single crystal X-ray diffractometry. The compounds exhibit very strong blue/white luminescence with emission quantum yields of up to 90%.
View Article and Find Full Text PDF