Publications by authors named "Rafailov E"

Although there is currently sufficient information on various parameters of capillary blood flow, including the average values of blood velocity, there is no data on the dynamics of velocity and the mechanisms of its modulation in various parts of the capillary. The main idea of this work is to develop a tool and image data processing to study the characteristics of the capillary blood flow dynamics. In this study, using the developed method of high-speed videocapillaroscopy, the red blood cells (RBC) velocities in the arterial and venous parts of the nailfold capillaries were compared and a time-frequency analysis of the dynamics of the velocity signals with the calculation of phase coherence was performed.

View Article and Find Full Text PDF

The 3D structure of native human skin is fundamental for studying skin health, diseases, wound healing, and for testing the safety of skin care products, as well as personalized treatments for skin conditions. Tissue regeneration, driven by tissue engineering, often involves creating full-thickness skin equivalents (FSE), which are widely used for developing both healthy and diseased skin models. In this study, we utilized human skin cell lines to create FSE.

View Article and Find Full Text PDF

We explore the propagation of structured vortex laser beams-shaped light carrying orbital angular momentum (OAM)-through complex multiple scattering medium. These structured vortex beams consist of a spin component, determined by the polarization of electromagnetic fields, and an orbital component, arising from their spatial structure. Although both spin and orbital angular momenta are conserved when shaped light propagates through a homogeneous, low-scattering medium, we investigate the conservation of these angular momenta during the propagation of Laguerre-Gaussian (LG) beams with varying topological charges through a turbid multiple scattering environment.

View Article and Find Full Text PDF

In this study, we explored the gain-managed nonlinear (GMN) amplification of ultra-low repetition rate pulses in the range of less than 1 MHz. By seeding the developed 1040 nm ultralong fiber modelocked laser to the GMN amplifier, we achieved high gain and boosted the nonlinear pulse propagation effects. We demonstrated that GMN amplification of low repetition rate pulses provided amplification exceeding 32 dB and spectral broadening up to 91 nm at relatively low pump power levels.

View Article and Find Full Text PDF

There is strong evidence that augmentation of the brain's waste disposal system via stimulation of the meningeal lymphatics might be a promising therapeutic target for preventing neurological diseases. In our previous studies, we demonstrated activation of the brain's waste disposal system using transcranial photostimulation (PS) with a laser 1267 nm, which stimulates the direct generation of singlet oxygen in the brain tissues. Here we investigate the mechanisms underlying this phenomenon.

View Article and Find Full Text PDF

Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode.

View Article and Find Full Text PDF

This work investigates the influence of laser irradiation parameters (wavelength, power density and exposure time) on singlet oxygen (O) generation efficiency. Chemical trap (L-histidine) and fluorescent probe (Singlet Oxygen Sensor Green, SOSG) detection methods were used. Studies have been conducted for 1267, 1244, 1122 and 1064 nm laser wavelengths.

View Article and Find Full Text PDF

This article presents clinical results of wireless portable dynamic light scattering sensors that implement laser Doppler flowmetry signal processing. It has been verified that the technology can detect microvascular changes associated with diabetes and ageing in volunteers. Studies were conducted primarily on wrist skin.

View Article and Find Full Text PDF

The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM).

View Article and Find Full Text PDF

A multimode optical fiber supports excitation and propagation of a pure single optical mode, i.e., the field pattern that satisfies the boundary conditions and does not change along the fiber.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) limits the delivery of majority of cancer drugs and thereby complicates brain tumor treatment. The nasal-brain-lymphatic system is discussed as a pathway for brain drug delivery overcoming the BBB. However, in most cases, this method is not sufficient to achieve a therapeutic effect due to brain drug delivery in a short distance.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) poses a significant challenge for drug delivery to the brain. Therefore, the development of safe methods for an effective delivery of medications to the brain can be a revolutionary step in overcoming this limitation. Using a quantum-dot-based 1267 nm laser (photosensitiser-free generation of singlet oxygen), we clearly show the photostimulation of lymphatic delivery of bevacizumab (BMZ) to the brain tissues and the meninges.

View Article and Find Full Text PDF

In recent years, there has been a growing interest in the singlet form of oxygen as a regulator of the physiological functions of cells. One of the ways to generate singlet oxygen is direct optical excitation of the triplet oxygen form. Since molecular oxygen weakly absorbs light, high power is required to obtain sufficient concentrations of singlet oxygen.

View Article and Find Full Text PDF

In this paper, we extend the paraxial conical refraction model to the case of the partially coherent light using the unified optical coherence theory. We demonstrate the decomposition of conical refraction correlation functions into well-known conical refraction coherent modes for a Gaussian Schell-model source. Assuming randomness of the electrical field phase of the input beam, we reformulated and significantly simplified the rigorous conical refraction theory.

View Article and Find Full Text PDF

In nature, sensory photoreceptors underlie diverse spatiotemporally precise and generally reversible biological responses to light. Photoreceptors also serve as genetically encoded agents in optogenetics to control by light organismal state and behavior. Phytochromes represent a superfamily of photoreceptors that transition between states absorbing red light (Pr) and far-red light (Pfr), thus expanding the spectral range of optogenetics to the near-infrared range.

View Article and Find Full Text PDF

Oxygen, in form of reactive oxygen species (ROS), has been shown to participate in oxidative stress, one of the major triggers for pathology, but also is a main contributor to physiological processes. Recently, it was found that 1267 nm irradiation can produce singlet oxygen without photosensitizers. We used this phenomenon to study the effect of laser-generated singlet oxygen on one of the major oxygen-dependent processes, mitochondrial energy metabolism.

View Article and Find Full Text PDF

Novel, non-invasive wearable laser Doppler flowmetry (LDF) devices measure real-time blood circulation of the left middle fingertip and the topside of the wrist of the left hand. The LDF signals are simultaneously recorded for fingertip and wrist. The amplitude of blood flow signals and wavelet analysis of the signal are used for the analysis of blood perfusion parameters.

View Article and Find Full Text PDF

We demonstrate that the conical refraction of the input elegant Laguerre-Gaussian beams can be effectively described through generalized Bessel-Gaussian light beams. We performed numerical simulations and show good agreement between the exact solution and our proposed Bessel-Gaussian approximation model. Physical clarity of the proposed model has allowed us to explain the transition of the classical double-ring pattern of conical refraction in the Lloyd plane into a multi-ring one and predict new phenomenon such as the Raman spot shift and dependence of the conical refraction ring radius on the value of the orbital angular momentum.

View Article and Find Full Text PDF

Abdominal cancer is a widely prevalent group of tumours with a high level of mortality if diagnosed at a late stage. Although the cancer death rates have in general declined over the past few decades, the mortality from tumours in the hepatoduodenal area has significantly increased in recent years. The broader use of minimal access surgery (MAS) for diagnostics and treatment can significantly improve the survival rate and quality of life of patients after surgery.

View Article and Find Full Text PDF

Self-starting pulsed operation in an electrically pumped (EP) vertical-external-cavity surface-emitting-laser (VECSEL) without intracavity saturable absorber is demonstrated. A linear hemispherical cavity design, consisting of the EP-VECSEL chip and a 10% output-coupler, is used to obtain picosecond output pulses with energies of 2.8 pJ and pulse widths of 130 ps at a repetition rate of 1.

View Article and Find Full Text PDF

Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level.

View Article and Find Full Text PDF

There is a hypothesis that augmentation of the drainage and clearing function of the meningeal lymphatic vessels (MLVs) might be a promising therapeutic target for preventing neurological diseases. Here we investigate mechanisms of photobiomodulation (PBM, 1267 nm) of lymphatic drainage and clearance. Our results obtained at optical coherence tomography (OCT) give strong evidence that low PBM doses (5 and 10 J/cm) stimulate drainage function of the lymphatic vessels via vasodilation (OCT data on the mesenteric lymphatics) and stimulation of lymphatic clearance (OCT data on clearance of gold nanorods from the brain) that was supported by confocal imaging of clearance of FITC-dextran from the cortex via MLVs.

View Article and Find Full Text PDF

The fundamental mode of a conical refraction resonator, i.e., an optical cavity where light experiences conical refraction (CR) from a biaxial crystal, is experimentally demonstrated in the plano-concave cavity configuration.

View Article and Find Full Text PDF