Annu Int Conf IEEE Eng Med Biol Soc
November 2021
Sedentary behavior is considered as a major public health challenge, linked with many chronic diseases and premature mortality. In this paper, we propose a steps counting -based machine learning approach for the prediction of sedentary behavior. Our work focuses on analyzing historical data from multiple users of wearable physical activity trackers and exploring the performance of four machine learning algorithms, i.
View Article and Find Full Text PDFDepressive disorder (DD) is a mental illness affecting more than 300 million people worldwide, whereas social stigma and subtle, variant symptoms impede diagnosis. Psychomotor retardation is a common component of DD with a negative impact on motor function, usually reflected on patients' routine activities, including, nowadays, their interaction with mobile devices. Therefore, such interactions constitute an enticing source of information towards unsupervised screening for DD symptoms in daily life.
View Article and Find Full Text PDF