Publications by authors named "Rafael V Sampaio"

Unlabelled: Although meiosis plays an essential role for the survival of species in natural selection, the genetic diversity resulting from sexual reproduction impedes human-driven strategies to transmit the most suitable genomes for genetic improvement, forcing breeders to select diploid genomes generated after fertilization, that is, after the encounter of sperm and oocytes carrying unknown genomes. To determine whether genomic assessment could be used before fertilization, some androgenetic haploid morula-stage bovine embryos derived from individual sperm were biopsied for genomic evaluation and others used to reconstruct "semi-cloned" (SC) diploid zygotes by the intracytoplasmic injection into parthenogenetically activated oocytes, and the resulting embryos were transferred to surrogate females to obtain gestations. Compared to controls, in vitro development to the blastocyst stage was lower and fewer surrogates became pregnant from the transfer of SC embryos.

View Article and Find Full Text PDF

Selection strategies are performed post-fertilization when the random combination of paternal and maternal genomes has already occurred. It would be greatly advantageous to eliminate meiotic uncertainty by selecting genetically superior gametes before fertilization. To achieve this goal, haploid embryonic cells and embryonic stem cell lineages could be derived, genotyped, and used to substitute gametes.

View Article and Find Full Text PDF

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria.

View Article and Find Full Text PDF

Background: The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk.

Methods And Results: Pseudo-lentivirus containing the bovine β-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced.

View Article and Find Full Text PDF

Haploid embryos have contributed significantly to our understanding of the role of parental genomes in development and can be applied to important biotechnology for human and animal species. However, development to the blastocyst stage is severely hindered in bovine haploid androgenetic embryos (hAE). To further our understanding of such developmental arrest, we performed a comprehensive comparison of the transcriptomic profile of morula-stage embryos, which were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of transcripts associated with differentiation in haploid and biparental embryos.

View Article and Find Full Text PDF

Cloning by somatic cell Nuclear Transfer (SCNT) is a powerful technology capable of reprograming terminally differentiated cells to totipotency for generating whole animals or pluripotent stem cells for use in cell therapy, drug screening, and other biotechnological applications. However, the broad usage of SCNT remains limited due to its high cost and low efficiency in obtaining live and healthy offspring. In this chapter, we first briefly discuss the epigenetic constraints responsible for the low efficiency of SCNT and current attempts to overcome them.

View Article and Find Full Text PDF

Much effort has been employed to improve the quality of embryos obtained by in vitro production (IVP) given the relevance of this technology to current livestock systems. In this context, dynamic IVP systems have proved beneficial to the embryo once they mimic fluid flows and mechanical forces resulting from the movement of ciliated cells and muscle contraction in the reproductive tract. In the present study, we sought to confirm these initial findings as well as assess potential molecular consequences to the embryo by applying micro-vibration (45 Hz for 5 s once per 60 min) during both oocyte maturation and embryo culture in cattle.

View Article and Find Full Text PDF

Besides their canonical roles as energy sources, short-chain fatty acids act as metabolic regulators of gene expression through histone posttranslational modifications. Ketone body β-hydroxybutyrate (BHB) causes a novel epigenetic modification, histone lysine β-hydroxybutyrylation (Kbhb), which is associated with genes upregulated in starvation-responsive metabolic pathways. Dairy cows increase BHB in early lactation, and the effects of this increase on cellular epigenomes are unknown.

View Article and Find Full Text PDF

Orchestrated events, including extensive changes in epigenetic marks, allow a somatic nucleus to become totipotent after transfer into an oocyte, a process termed nuclear reprogramming. Recently, several strategies have been applied in order to improve reprogramming efficiency, mainly focused on removing repressive epigenetic marks such as histone methylation from the somatic nucleus. Herein we used the specific and non-toxic chemical probe UNC0638 to inhibit the catalytic activity of the histone methyltransferases EHMT1 and EHMT2.

View Article and Find Full Text PDF

The rapid decline in fertility that has been occurring to high-producing dairy cows in the past 50 years seems to be associated with metabolic disturbances such as ketosis, supporting the need for research to improve our understanding of the relations among the diet, metabolism and embryonic development. Recently, the ketone body β-hydroxybutyrate (BOHB) was demonstrated to be a potent inhibitor of histone deacetylases (HDACs). Herein, we performed a series of experiments aiming to investigate the epigenetic effects of BOHB on histone acetylation in somatic cells, cumulus-oocyte complexes (COCs) and somatic cell nuclear transfer (SCNT) embryos.

View Article and Find Full Text PDF

Epigenetic mechanisms allow the establishment and maintenance of multiple cellular phenotypes from a single genomic code. At the initiation of development, the oocyte and spermatozoa provide their fully differentiated chromatin that soon after fertilization undergo extensive remodeling, resulting in a totipotent state that can then drive cellular differentiation towards all cell types. These remodeling involves different epigenetic modifications, including DNA methylation, post-translational modifications of histones, non-coding RNAs, and large-scale chromatin conformation changes.

View Article and Find Full Text PDF
Article Synopsis
  • Embryonic stem cells (ESCs) are obtained from the inner cell mass of early-stage embryos and are essential for various agricultural and medical applications.
  • Researchers successfully derived stable pluripotent bovine ESCs (bESCs) using a specific culture system that included fibroblast growth factor 2 and a Wnt-signaling pathway inhibitor.
  • This method allowed for efficient creation and propagation of bESC lines, which could be used in technologies like nuclear transfer for producing valuable cattle with desirable genetic traits.
View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) success is partially hindered by the low epigenetic reprogramming efficiency of the donor cell. Previous studies suggest cellular heterogeneity among donor nuclei in regard to reprogramming potential, which precludes comparison among different strategies to increase cloning success. In this context, we evaluated the effect of using clonal cell populations (CPs) of bovine adult fibroblasts established by single-cell plating in SCNT.

View Article and Find Full Text PDF

Pregnancy success results from the interaction of multiple factors, among them are folliculogenesis and early embryonic development. Failure during these different processes can lead to difficulties in conception. Alternatives to overcome these problems are based on assisted reproductive techniques.

View Article and Find Full Text PDF
Article Synopsis
  • * Different concentrations of L-arginine (0, 1, 10, and 50 mM) were tested for their impact on fertilization rates, the production of nitric oxide, cleavage, blastocyst rates, and total blastocyst cell numbers over time.
  • * The results showed that while high concentrations (50 mM) of L-arginine harmed embryo development, a lower concentration (1 mM) with Bos indicus sperm improved the rate of hatched blastocysts, suggesting that too much L
View Article and Find Full Text PDF

Amnion-derived mesenchymal stem cells (AMSCs) are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine.

View Article and Find Full Text PDF

Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates.

View Article and Find Full Text PDF

Background: Melatonin inclusion into in vitro oocyte maturation (IVM) protocols has been suggested because it possesses a powerful free radical scavenger capability that improves the quality of the oocyte used in in vitro embryo production (IVP). The aim of our study was to investigate the presence of melatonin membrane receptors (MT1and MT2) and MT3, which is the melatonin binding site of NQO2 enzyme, in both oocytes and hatched blastocysts to consider an additional subcellular mechanism responsible for the effects of melatonin on IVP.

Methods: The presence of the high affinity melatonin receptors was investigated through an autoradiographic binding assay, using the non-permeable ligand [125I]-iodomelatonin (17 pM) in embryos.

View Article and Find Full Text PDF

The efficiency of in vitro fertilization (IVF) depends on the viability of spermatozoa. For capuchin monkeys (Cebus apella), in vitro capacitation of spermatozoa is challenging because of their unique seminal coagulum. Motile spermatozoa can be obtained after liquefaction of the semen coagulum in coconut water-based solution.

View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced.

View Article and Find Full Text PDF