Currently, social networks present information of great relevance to various government agencies and different types of companies, which need knowledge insights for their business strategies. From this point of view, an important technique for data analysis is to create and maintain an environment for collecting data and transforming them into intelligence information to enable analysts to observe the evolution of a given topic, elaborate the analysis hypothesis, identify botnets, and generate data to aid in the decision-making process. Focusing on collecting, analyzing, and supporting decision-making, this paper proposes an architecture designed to monitor and perform anonymous real-time searches in tweets to generate information allowing sentiment analysis on a given subject.
View Article and Find Full Text PDFMolecular crystals have been used as prototypes for studying the energetic and dynamic properties of charge carriers in organic electronics. The growing interest in oligoacenes and fused-ring oligothiophenes in the last two decades is due, in particular, to the success achieved in conceiving pentacene-based organic photovoltaic devices. In the present work, a one-dimensional Holstein-Peierls model is designed to study the temperature-dependent polaron transport in pentathienoacene (PTA) lattices.
View Article and Find Full Text PDFArmchair graphene nanoribbons (AGNRs) may present intrinsic semiconducting bandgaps, being of potential interest in developing new organic-based optoelectronic devices. The induction of a bandgap in AGNRs results from quantum confinement effects, which reduce charge mobility. In this sense, quasiparticles' effective mass becomes relevant for the understanding of charge transport in these systems.
View Article and Find Full Text PDFOrganic nanofibers have found various applications in optoelectronic devices. In such devices, exciton diffusion is a major aspect concerning their efficiency. In the case of singlet excitons, Förster transfer is the mechanism responsible for this process.
View Article and Find Full Text PDFThe dynamical properties of polarons in armchair graphene nanoribbons (GNR) is numerically investigated in the framework of a two-dimensional tight-binding model that considers spin-orbit (SO) coupling and electron-lattice (e-l) interactions. Within this physical picture, novel polaron properties with no counterparts to results obtained from conventional tight-binding models are obtained. Our findings show that, depending on the system's width, the presence of SO coupling changes the polaron's charge localization giving rise to different degrees of stability for the charge carrier.
View Article and Find Full Text PDFAm J Orthod Dentofacial Orthop
July 2007
Today, orthodontists should not need to burden their work load with tasks such as figuring out how to send patient information to colleagues or how to share the same patient record across different software programs. In a long-term attempt to lighten these tasks, we are developing a standard for electronic orthodontic patient records to enable a seamless interchange of data between software programs. This article describes a practical proposal that integrates 2 existing standards, HL7 and DICOM, to create a standard for electronic orthodontic patient records.
View Article and Find Full Text PDF