In the present study, we demonstrate that pyroligneous acid (PA), also known as wood vinegar, functions efficiently as both reducing and stabilizing agent in the synthesis of silver nanoparticles (AgNPs). The synthesis and stabilization of AgNPs take place in the following fashion: 1) in alkaline environment, oxygenated species (phenols in the present case) contained in PA reduce silver ions to metallic silver; 2) acetic acid, abundantly present in PA, adsorb onto the AgNPs conferring electrostatic stabilization. This mechanism is supported by GC-MS and RAMAN analysis, with the former revealing the compounds lacking in PA after nanoparticle synthesis and the latter demonstrating acetic acid adsorbed on the nanoparticles.
View Article and Find Full Text PDFBackground: In initial assays, Thymus vulgaris essential oil (TEO) has demonstrated activity against several plant-pathogenic fungi and has reduced the fungal diseases to levels comparable with commercial fungicides. Thus, the goal of this work was to identify the mode of action in fungi of TEO and its major compound thymol (TOH) at the cellular level using an ultrastructure approach.
Results: TEO from leaves and TOH had minimum inhibitory concentrations (MICs) of 500 and 250 µg mL(-1) respectively against A.