Publications by authors named "Rafael R Domeneguetti"

To address the problems associated with the use of unsupported nanomaterials, in general, and molybdenum disulfide (MoS), in particular, we report the preparation of self-supported hybrid aerogel membranes that combine the mechanical stability and excellent textural properties of bacterial nanocellulose (BC)-based organic macro/mesoporous scaffolds with the excellent adsorption-cum-photocatalytic properties and high contaminant removal performance of MoS nanostructures. A controlled hydrothermal growth and precise tuning of the synthetic parameters allowed us to obtain BC/MoS-based porous, self-supported, and stable hybrid aerogels with a unique morphology resulting from a molecular precision in the coating of quantum-confined photocatalytic MoS nanostructures (2-4 nm crystallite size) on BC nanofibrils. These BC/MoS samples exhibit high surface area (97-137 m·g) and pore volume (0.

View Article and Find Full Text PDF

The pursuit of biocompatible, breathable and skin-conformable wearable sensors has predominantly focused on synthetic stretchable hydrophobic polymers. Microbial nanocellulose (MNC) is an exceptional skin-substitute natural polymer routinely used for wound dressing and offers unprecedented potential as substrate for wearable sensors. A versatile strategy for engineering wearable sensing platforms is reported, with sensing units made of screen-printed carbon electrodes (SPCEs) on MNC.

View Article and Find Full Text PDF

This study presented a biosafety device for the hygienic storage of composite resin during restorative procedures in teaching clinics, RESTAURASAFE, and to compare the color stability, surface hardness, and degree of conversion of the composite resin made with the proposed device to those of conventionally made resins. Esthet-X HD composite was manipulated directly from the syringe, fractionated doses, dappen dish or RESTAURASAFE. Disc-shaped specimens were immersed in artificial saliva and coffee for 60 days and the color stability and the Vickers surface hardness were evaluated during 60 days.

View Article and Find Full Text PDF

Highly transparent biocomposite based on bacterial cellulose (BC) mat modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (EPE) were fabricated in situ during biosynthesis of bacterial cellulose in a static culture from Gluconacetobacter xylinum. The effect of the addition to the culture medium of water-soluble EPE block copolymer on structure, morphology, crystallinity, and final properties of the novel biocomposites was investigated at nano- and macroscale. High compatibility between components was confirmed by ATR-FTIR indicating hydrogen bond formation between the OH group of BC and the PEO block of EPE block copolymer.

View Article and Find Full Text PDF