Publications by authors named "Rafael Martin-Del-Rio"

The application of high concentrations of taurine induces long-lasting potentiation of synaptic responses and axon excitability. This phenomenon seems to require the contribution of a transport system with a low affinity for taurine. The prototypic taurine transporter TauT (SLC6A6) was discarded by experimental evidence obtained in TauT-KO mice.

View Article and Find Full Text PDF

We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2.

View Article and Find Full Text PDF

Taurine is especially abundant in rodent brain where it appears to be involved in osmoregulation and synaptic plasticity mechanisms. The demonstration of a physiological role for taurine has been hampered by the difficulty in modifying taurine levels in most tissues, including the brain. We used an experimental strategy to reduce taurine levels, involving treatment with guanidinoethyl sulfonate (GES), a structural analogue of taurine that, among other properties, acts as a competitive inhibitor of taurine transport.

View Article and Find Full Text PDF

A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma).

View Article and Find Full Text PDF

Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS-1 cells. Taking advantage of hemicannels'opening, the uptake of extracellular ATP and its effect on insulin release were investigated.

View Article and Find Full Text PDF

Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glutamate and may use it through oxidative glutamate dehydrogenase (GDH) activity.

View Article and Find Full Text PDF

The existence of functional connexin36 (Cx36) hemichannels in β-cells was investigated in pancreatic islets of rat and wild-type (Cx36(+/+)), monoallelic (Cx36(+/-)), and biallelic (Cx36(-/-)) knockout mice. Hemichannel opening by KCl depolarization was studied by measuring ATP release and changes of intracellular ATP (ADP). Cx36(+/+) islets lost ATP after depolarization with 70 mM KCl at 5 mM glucose; ATP loss was prevented by 8 and 20 mM glucose or 50 μM mefloquine (connexin inhibitor).

View Article and Find Full Text PDF

Co-activation of NMDA and dopamine receptors is required for the induction of the late phase of LTP (L-LTP) that is dependent on new protein synthesis. Other neuromodulatory substances may also contribute to this process. Here, we examined whether taurine is one of the neuromodulators contributing to L-LTP induction, since it is known that taurine uptake induces a long-lasting synaptic potentiation dependent on protein synthesis, and taurine uptake inhibition blocks L-LTP induced by tetanization.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation.

View Article and Find Full Text PDF

In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell-specific GDH knockout mouse model, called βGlud1(-/-). The absence of GDH in islets isolated from βGlud1(-/-) mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.

View Article and Find Full Text PDF

Glutamate is generated during nutrient stimulation of pancreatic islets and has been proposed to act both as an intra- and extra-cellular messenger molecule. We demonstrate that glutamate is not co-secreted with the hormones from intact islets or purified α- and β-cells. Fractional glutamate release was 5-50 times higher than hormone secretion.

View Article and Find Full Text PDF

We have demonstrated recently that branched-chain α-keto acid stimulation of insulin secretion is dependent on islet GABA (γ-aminobutyric acid) metabolism: GABA transamination to succinic semialdehyde is increased by 2-oxoglutarate, generated in α-keto acid transamination to its corresponding α-amino acid. The present work was aimed at investigating whether glucose also promotes islet GABA metabolism and whether the latter contributes to the stimulation of insulin secretion. Glucose (20 mM) decreased both the content and release of islet GABA.

View Article and Find Full Text PDF

We have previously shown that oxo-4-methylpentanoate promotes islet GABA (gamma-aminobutyric acid) metabolism and stimulates insulin secretion. The main aim of this work was to explore the participation of the transamination of branched-chain 2-oxoacids in these processes with the aid of several inhibitors of this enzyme activity. No correlation was found between the transamination of branched-chain 2-oxoacids in islet homogenates and insulin secretion.

View Article and Find Full Text PDF

OMP (oxo-4-methylpentanoic acid) stimulates by itself a biphasic secretion of insulin whereas L-leucine requires the presence of L-glutamine. L-Glutamine is predominantly converted into GABA (gamma-aminobutyric acid) in rat islets and L-leucine seems to promote its metabolism in the 'GABA shunt' [Fernández-Pascual, Mukala-Nsengu-Tshibangu, Martín del Río and Tamarit-Rodríguez (2004) Biochem. J.

View Article and Find Full Text PDF

L-arginine transport is crucial for macrophage activation because it supplies substrate for the key enzymes nitric oxide synthase 2 and arginase I. These enzymes participate in classic and alternative activation of macrophages, respectively. Classic activation of macrophages is induced by type I cytokines, and alternative activation is induced by type II cytokines.

View Article and Find Full Text PDF

It has been postulated that cellular glutamate is released into the extracellular fluid when the energy supply of the brain is compromised (i.e., anoxia or oxygen/glucose deprivation), and there the amino acid triggers the so-called excitotoxic cascade, causing neuronal death.

View Article and Find Full Text PDF

Background: The human amino acid transporter asc-1 (SLC7A10) exhibits substrate selectivity for small neutral amino acids, including cysteine, is expressed in kidney, is located close to the cystinuria B gene and presents sequence variants (e.g., E112D) in some cystinuria patients.

View Article and Find Full Text PDF

Unlabelled: The relative contribution of glycolysis vs. oxidative metabolism to the stimulus secretion coupling mechanism of beta-cells was investigated in isolated islets. For that purpose, the secretory and intracellular calcium responses of islets to both glucose and succinic acid dimethyl ester (SAD) were compared.

View Article and Find Full Text PDF

Taurine application in the CA1 area of rat hippocampal slices induces a long-lasting potentiation of excitatory synaptic transmission that has some mechanistic similitude with the late phase of long-term potentiation (L-LTP). Previous indirect evidence such as temperature and sodium dependence indicated that taurine uptake is one of the primary steps leading to the taurine-induced synaptic potentiation. We show that taurine-induced potentiation is not related to the intracellular accumulation of taurine and is not impaired by 2-guanidinoethanesulphonic acid, a taurine transport inhibitor that is a substrate of taurine transporter.

View Article and Find Full Text PDF

We have carried out a detailed examination of L-glutamine metabolism in rat islets in order to elucidate the paradoxical failure of L-glutamine to stimulate insulin secretion. L-Glutamine was converted by isolated islets into GABA (gamma-aminobutyric acid), L-aspartate and L-glutamate. Saturation of the intracellular concentrations of all of these amino acids occurred at approx.

View Article and Find Full Text PDF

Apical reabsorption of dibasic amino acids and cystine in kidney is mediated by the heteromeric amino acid antiporter rBAT/b(0,+)AT (system b(0,+)). Mutations in rBAT cause cystinuria type A, whereas mutations in b(0,+)AT cause cystinuria type B. b(0,+)AT is the catalytic subunit, whereas it is believed that rBAT helps the routing of the rBAT/b(0,+)AT heterodimeric complex to the plasma membrane.

View Article and Find Full Text PDF

During renal reabsorption, the amino acid transporters b(o,+) and y(+)L have a major role in the apical uptake of cystine and dibasic amino acids and in the basolateral efflux of dibasic amino acids, respectively. In contrast, the transporters responsible for the basolateral efflux of the apically transported cystine are unknown. This study shows the expression of system L and y(+)L transport activities in the basolateral domain of the proximal tubule-derived cell line OK and the cloning of the corresponding LAT-2 and y(+)LAT-1 cDNAs.

View Article and Find Full Text PDF

This article describes new ultrastructural staining methods for osmicated tissues based on the incubation of sections with sodium metaperiodate and sodium borohydride solutions before uranyl/lead staining. Sections incubated with sodium metaperiodate and sodium borohydride, treated with Triton X-100, and stained with ethanolic uranyl acetate/lead citrate showed a good contrast for the nucleolus and the interchromatin region, whereas the chromatin masses were bleached. Chromatin bleaching depended on the incubation with these oxidizing (metaperiodate) and reducing (borohydride) agents.

View Article and Find Full Text PDF