Publications by authors named "Rafael L G Raimundo"

In developing countries, outbreaks of zoonotic diseases (ZDs) result from intertwined ecological, socioeconomic, and demographic processes that shape conditions for (i) increased contact between vulnerable human population and wildlife in areas undergoing environmental degradation and (ii) the rapid geographic spread of infections across socially vulnerable regions. In Brazil, recent increases in environmental and social vulnerabilities, amplified by economic and political crises, are potential triggers for outbreaks. We discuss Brazilian features that favor outbreaks and show a novel quantitative method for zoonotic risk assessment.

View Article and Find Full Text PDF

Although international airports served as main entry points for SARS-CoV-2, the factors driving the uneven geographic spread of COVID-19 cases and deaths in Brazil remain mostly unknown. Here we show that three major factors influenced the early macro-geographical dynamics of COVID-19 in Brazil. Mathematical modeling revealed that the "super-spreading city" of São Paulo initially accounted for more than 85% of the case spread in the entire country.

View Article and Find Full Text PDF

Understanding the processes driving ecological resilience, that is the extent to which systems retain their structure while absorbing perturbations, is a central challenge for theoretical and applied ecologists. Plant-insect assemblages are well-suited for the study of ecological resilience as they are species-rich and encompass a variety of ecological interactions that correspond to essential ecosystem functions. Mechanisms affecting community response to perturbations depend on both the natural history and structure of ecological interactions.

View Article and Find Full Text PDF

The urgent need to restore biodiversity and ecosystem functioning challenges ecology as a predictive science. Restoration ecology would benefit from evolutionary principles embedded within a framework that combines adaptive network models and the phylogenetic structure of ecological interactions. Adaptive network models capture feedbacks between trait evolution, species abundances, and interactions to explain resilience and functional diversity within communities.

View Article and Find Full Text PDF

Biological intimacy-the degree of physical proximity or integration of partner taxa during their life cycles-is thought to promote the evolution of reciprocal specialization and modularity in the networks formed by co-occurring mutualistic species, but this hypothesis has rarely been tested. Here, we test this "biological intimacy hypothesis" by comparing the network architecture of brood pollination mutualisms, in which specialized insects are simultaneously parasites (as larvae) and pollinators (as adults) of their host plants to that of other mutualisms which vary in their biological intimacy (including ant-myrmecophyte, ant-extrafloral nectary, plant-pollinator and plant-seed disperser assemblages). We use a novel dataset sampled from leafflower trees (Phyllanthaceae: Phyllanthus s.

View Article and Find Full Text PDF

Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements.

View Article and Find Full Text PDF

Adaptive speciation can occur when a population undergoes assortative mating and disruptive selection caused by frequency-dependent intraspecific competition. However, other interactions, such as mutualisms based on trait matching, may generate conflicting selective pressures that constrain species diversification. We used individual-based simulations to explore how different types of mutualism affect adaptive diversification.

View Article and Find Full Text PDF

Background And Aims: Functional groups of species interact and coevolve in space and time, forming complex networks of interacting species. A long-term study of temporal variation of an ant-plant network is presented with the aims of: (1) depicting its structural changes over a 20-year period; (2) detailing temporal variation in network topology, as revealed by nestedness and modularity analysis and other parameters (i.e.

View Article and Find Full Text PDF

A survey of the endophagous insects fauna associated to Asteraceae capitula was carried out from 2000 to 2002 in eight cerrado sensu stricto sites located in the Brazilian state of Sdo Paulo. Sixty-four endophagous species of Diptera and Lepidoptera were recorded from 49 asteracean host plants. Approximately half of the species were obtained from a single locality, with a large proportion emerging from a single sample (unicates).

View Article and Find Full Text PDF