t-Butyl-oxycarbonylated diamines ("di-Boc-carbamates") are investigated as dicarbamate monomers for diamine/dicarbamate polymerizations. Polyureas (PUs) and polyurethanes (PURs) with high molecular weights are prepared from stoichiometric polymerizations of diamines or diols with N-N'-di-t-butyl-oxycarbonyl isophorone diamine (DiBoc-IPDC) using KOt-Bu as a catalyst, while gelation is observed when an excess of DiBoc-IPDC is used with respect to the diamines or diols. Stable dispersions are obtained from PUs and PURs with 3,3'-diamino-N-methyldipropylamine (DMDPA) as internal dispersing agent.
View Article and Find Full Text PDFHere, an isocyanate-free approach to produce polyureas from diamines and dicarbamates as monomers is reported. A side reaction limiting the molecular weight during the diamine/ dicarbamate polymerization, that is, N-alkylation of amine end groups, is investigated. Mitigation of the N-alkylation, either by enhancing the carbamate aminolysis rate or by substitution of dimethylcarbamates with more sterically hindered diethylcarbamates, affords polyureas with sufficiently high molecular weights to assure satisfactory mechanical properties.
View Article and Find Full Text PDFThe depolymerization of poly(limonene carbonate) (PLC) initiated by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was investigated.
View Article and Find Full Text PDFThe alternating copolymerization of biorenewable limonene dioxide with carbon dioxide (CO2 ) catalyzed by a zinc β-diiminate complex is reported. The chemoselective reaction results in linear amorphous polycarbonates that carry pendent methyloxiranes and exhibit glass transition temperatures (Tg ) up to 135 °C. These polycarbonates can be efficiently modified by thiols or carboxylic acids in combination with lithium hydroxide or tetrabutylphosphonium bromide as catalysts, respectively, without destruction of the main chain.
View Article and Find Full Text PDF