Publications by authors named "Rafael Irizarry"

Spatial transcriptomics enables high-resolution gene expression measurements while preserving the two-dimensional spatial organization of the sample. A common objective in spatial transcriptomics data analysis is to identify spatially variable genes within predefined cell types or regions within the tissue. However, these regions are often implicitly one-dimensional, making standard two-dimensional coordinate-based methods less effective as they overlook the underlying tissue organization.

View Article and Find Full Text PDF

Engineered cellular therapy with CD19-targeting chimeric antigen receptor T cells (CAR-Ts) has revolutionized outcomes for patients with relapsed/refractory large B-cell lymphoma (LBCL), but the cellular and molecular features associated with response remain largely unresolved. We analyzed serial peripheral blood samples ranging from the day of apheresis (day -28/baseline) to 28 days after CAR-T infusion from 50 patients with LBCL treated with axicabtagene ciloleucel by integrating single-cell RNA and T-cell receptor sequencing, flow cytometry, and mass cytometry to characterize features associated with response to CAR-T. Pretreatment patient characteristics associated with response included the presence of B cells and increased absolute lymphocyte count to absolute monocyte count ratio (ALC/AMC).

View Article and Find Full Text PDF

Single-cell transcriptomics has emerged as a powerful tool for understanding how different cells contribute to disease progression by identifying cell types that change across diseases or conditions. However, detecting changing cell types is challenging due to individual-to-individual and cohort-to-cohort variability and naive approaches based on current computational tools lead to false positive findings. To address this, we propose a computational tool, scDist, based on a mixed-effects model that provides a statistically rigorous and computationally efficient approach for detecting transcriptomic differences.

View Article and Find Full Text PDF

Spatial transcriptomics technologies permit the study of the spatial distribution of RNA at near-single-cell resolution genome-wide. However, the feasibility of studying spatial allele-specific expression (ASE) from these data remains uncharacterized. Here, we introduce spASE, a computational framework for detecting and estimating spatial ASE.

View Article and Find Full Text PDF

Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity.

View Article and Find Full Text PDF

Background: KRAS is among the most commonly mutated oncogenes in cancer, and previous studies have shown associations with survival in many cancer contexts. Evidence from both clinical observations and mouse experiments further suggests that these associations are allele- and tissue-specific. These findings motivate using clinical data to understand gene interactions and clinical covariates within different alleles and tissues.

View Article and Find Full Text PDF

Recent studies have identified thousands of associations between DNA methylation CpGs and complex diseases/traits, emphasizing the critical role of epigenetics in understanding disease aetiology and identifying biomarkers. However, association analyses based on methylation array data are susceptible to batch/slide effects, which can lead to inflated false positive rates or reduced statistical power We use multiple DNA methylation datasets based on the popular Illumina Infinium MethylationEPIC BeadChip array to describe consistent patterns and the joint distribution of slide effects across CpGs, confirming and extending previous results. The susceptible CpGs overlap with the Illumina Infinium HumanMethylation450 BeadChip array content.

View Article and Find Full Text PDF
Article Synopsis
  • Nuclear hormone receptors (NRs) are important transcription factors that can be targeted for therapy, and their degradation is crucial for treating cancers linked to retinoic acid and estrogen receptors.
  • The study identifies UBR5 as a ubiquitin ligase responsible for degrading various agonist-bound NRs, including RARA and RXRA, and reveals structural insights into UBR5's interaction with these receptors.
  • The research shows that different ligands can affect the recruitment of coactivators and UBR5 to chromatin, thereby influencing the transcriptional regulation of NRs.
View Article and Find Full Text PDF

Unsupervised clustering of single-cell RNA-sequencing data enables the identification of distinct cell populations. However, the most widely used clustering algorithms are heuristic and do not formally account for statistical uncertainty. We find that not addressing known sources of variability in a statistically rigorous manner can lead to overconfidence in the discovery of novel cell types.

View Article and Find Full Text PDF

Official COVID-19 mortality statistics are strongly influenced by local diagnostic capacity, strength of the healthcare and vital registration systems, and death certification criteria and capacity, often resulting in significant undercounting of COVID-19 attributable deaths. Excess mortality, which is defined as the increase in observed death counts compared to a baseline expectation, provides an alternate measure of the mortality shock-both direct and indirect-of the COVID-19 pandemic. Here, we use data from civil death registers from a convenience sample of 90 (of 162) municipalities across the state of Gujarat, India, to estimate the impact of the COVID-19 pandemic on all-cause mortality.

View Article and Find Full Text PDF

Although antibodies targeting specific tumor-expressed antigens are the standard of care for some cancers, the identification of cancer-specific targets amenable to antibody binding has remained a bottleneck in development of new therapeutics. To overcome this challenge, we developed a high-throughput platform that allows for the unbiased, simultaneous discovery of antibodies and targets based on phenotypic binding profiles. Applying this platform to ovarian cancer, we identified a wide diversity of cancer targets including receptor tyrosine kinases, adhesion and migration proteins, proteases and proteins regulating angiogenesis in a single round of screening using genomics, flow cytometry, and mass spectrometry.

View Article and Find Full Text PDF

A central problem in spatial transcriptomics is detecting differentially expressed (DE) genes within cell types across tissue context. Challenges to learning DE include changing cell type composition across space and measurement pixels detecting transcripts from multiple cell types. Here, we introduce a statistical method, cell type-specific inference of differential expression (C-SIDE), that identifies cell type-specific DE in spatial transcriptomics, accounting for localization of other cell types.

View Article and Find Full Text PDF

Background: Individual and environmental health outcomes are frequently linked to changes in the diversity of associated microbial communities. Thus, deriving health indicators based on microbiome diversity measures is essential. While microbiome data generated using high-throughput 16S rRNA marker gene surveys are appealing for this purpose, 16S surveys also generate a plethora of spurious microbial taxa.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) quantifies gene expression for individual cells in a sample, which allows distinct cell-type populations to be identified and characterized. An important step in many scRNA-seq analysis pipelines is the annotation of cells into known cell types. While this can be achieved using experimental techniques, such as fluorescence-activated cell sorting, these approaches are impractical for large numbers of cells.

View Article and Find Full Text PDF

We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA relationships following target prediction.We present two use cases applying mirTarRnaSeq.

View Article and Find Full Text PDF

Quantifying the impact of natural disasters or epidemics is critical for guiding policy decisions and interventions. When the effects of an event are long-lasting and difficult to detect in the short term, the accumulated effects can be devastating. Mortality is one of the most reliably measured health outcomes, partly due to its unambiguous definition.

View Article and Find Full Text PDF

Pharmacogenomic experiments allow for the systematic testing of drugs, at varying dosage concentrations, to study how genomic markers correlate with cell sensitivity to treatment. The first step in the analysis is to quantify the response of cell lines to variable dosage concentrations of the drugs being tested. The signal to noise in these measurements can be low due to biological and experimental variability.

View Article and Find Full Text PDF

Background: On July 15, 2021, with 58% of the population fully vaccinated, the start of a COVID-19 surge was observed in Puerto Rico. On July 22, 2021, the government of Puerto Rico started imposing a series of strict vaccine mandates. Two months later, over 70% of the population was vaccinated, more than in any US state, and laboratory-confirmed SARS-CoV-2 had dropped substantially.

View Article and Find Full Text PDF

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation.

View Article and Find Full Text PDF

Multiple sources of variability can bias ChIP-seq data toward inferring transcription factor (TF) binding profiles. As ChIP-seq datasets increase in public repositories, it is now possible and necessary to account for complex sources of variability in ChIP-seq data analysis. We find that two types of variability, the batch effects by sequencing laboratories and differences between biological replicates, not associated with changes in condition or state, vary across genomic sites.

View Article and Find Full Text PDF

The composition of the maternal vaginal microbiome influences the duration of pregnancy, onset of labor, and even neonatal outcomes. Maternal microbiome research in sub-Saharan Africa has focused on non-pregnant and postpartum composition of the vaginal microbiome. Here we aimed to illustrate the relationship between the vaginal microbiome of 99 laboring Ugandan women and intrapartum fever using routine microbiology and 16S ribosomal RNA gene sequencing from two hypervariable regions (V1-V2 and V3-V4).

View Article and Find Full Text PDF

High-dimensional biological data collection across heterogeneous groups of samples has become increasingly common, creating high demand for dimensionality reduction techniques that capture underlying structure of the data. Discovering low-dimensional embeddings that describe the separation of any underlying discrete latent structure in data is an important motivation for applying these techniques since these latent classes can represent important sources of unwanted variability, such as batch effects, or interesting sources of signal such as unknown cell types. The features that define this discrete latent structure are often hard to identify in high-dimensional data.

View Article and Find Full Text PDF

Objective: To estimate the direct and indirect effects of the covid-19 pandemic on mortality in 2020 in 29 high income countries with reliable and complete age and sex disaggregated mortality data.

Design: Time series study of high income countries.

Setting: Austria, Belgium, Czech Republic, Denmark, England and Wales, Estonia, Finland, France, Germany, Greece, Hungary, Israel, Italy, Latvia, Lithuania, the Netherlands, New Zealand, Northern Ireland, Norway, Poland, Portugal, Scotland, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, and United States.

View Article and Find Full Text PDF

The tumor immune microenvironment plays a critical role in cancer progression and response to immunotherapy in clear cell renal cell carcinoma (ccRCC), yet the composition and phenotypic states of immune cells in this tumor are incompletely characterized. We performed single-cell RNA and T cell receptor sequencing on 164,722 individual cells from tumor and adjacent non-tumor tissue in patients with ccRCC across disease stages: early, locally advanced, and advanced/metastatic. Terminally exhausted CD8 T cells were enriched in metastatic disease and were restricted in T cell receptor diversity.

View Article and Find Full Text PDF

A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets.

View Article and Find Full Text PDF