Diagnosis of renal failure by measuring urea levels has been a topic of intense study in recent years. A major focus has been on improving the sensitivity, linearity, precision, accuracy, and selectivity of biosensors for measuring urea. Although various materials have been used in the fabrication of urea biosensors, ceramics, and chalcogenides have been less explored in this field.
View Article and Find Full Text PDFMicromachines (Basel)
January 2023
The micro-electromechanical system (MEMS) sensors are suitable devices for vibrational analysis in complex systems. The Fabry-Pérot interferometer (FPI) is used due to its high sensitivity and immunity to electromagnetic interference (EMI). Here, we present the design, fabrication, and characterization of a silicon-on-insulator (SOI) MEMS device, which is embedded in a metallic package and connected to an optical fiber.
View Article and Find Full Text PDFCuffless blood pressure measurement enables unobtrusive and continuous monitoring that can be integrated with wearable devices to extend healthcare to non-hospital settings. Most of the current research has focused on the estimation of blood pressure based on pulse transit time or pulse arrival time using ECG or peripheral cardiac pulse signals as proximal time references. This study proposed the use of a phonocardiogram (PCG) and ballistocardiogram (BCG), two signals detected noninvasively, to estimate systolic blood pressure (SBP).
View Article and Find Full Text PDFWireless sensor networks are used in many location-dependent applications. The location of sensor nodes is commonly carried out in a distributed way for energy saving and network robustness, where the handling of these characteristics is still a great challenge. It is very desirable that distributed algorithms invest as few iterations as possible with the highest accuracy on position estimates.
View Article and Find Full Text PDFThis paper proposes a microcontroller-based measurement system to detect and confirm the presence of a subject in a chair. The system relies on a single Force Sensing Resistor (FSR), which is arranged in the seat of the chair, that undergoes a sudden resistance change when a subject/object is seated/placed over the chair. In order to distinguish between a subject and an inanimate object, the system also monitors small-signal variations of the FSR resistance caused by respiration.
View Article and Find Full Text PDFThis paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance.
View Article and Find Full Text PDFIn this paper, a novel technique for heart rate measurement on a standing subject is proposed that relies on electrical impedance variations detected by a plantar interface with booth feet, such as those in some bathroom weighting scales for body composition analysis. Heart-related impedance variations in the legs come from arterial blood circulation and are below 500 mOmega. To detect them, we have implemented a system with a gain in excess of 600, and whose fully differential AC input amplifier has a gain of 4.
View Article and Find Full Text PDF