Publications by authors named "Rafael G Mendes"

AgCuSe nanoparticles could contribute to the growth of strongly light-absorbing thin films and solids with fast ion mobility, among other potential properties. Nevertheless, few methods have been developed so far for the synthesis of AgCuSe nanoparticles, and those reported deliver nanostructures with relatively large sizes and broad size and shape distributions. In this work, a colloidal cation exchange method is established for the easy synthesis of AgCuSe NPs with ca.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a mixture of ZnO and ZrO2 makes a better catalyst for turning CO2 into methanol than using either one alone.
  • They created two types of catalysts, one with a special form of ZrO2 called tetragonal (ZnO/ZrO2-t) and another with a different form called monoclinic (ZnO/ZrO2-m).
  • The tetragonal version worked much better, producing more methanol because it helped the zinc to spread out and react more effectively.
View Article and Find Full Text PDF

Evolution of the Pd active centers in size and spatial distribution leads to an irreversible deactivation in many high-temperature catalytic processes. This research demonstrates the use of a defective alumina (AlO) as catalyst support to anchor Pd atoms and suppress the growth of Pd clusters in catalytic methane oxidation. A combination of operando spectroscopy and density functional theory (DFT) calculations provide insights into the evolution of Pd species and reveals distinct catalytic methane oxidation mechanisms on Pd single atoms, clusters, and nanoparticles (NPs).

View Article and Find Full Text PDF
Article Synopsis
  • Colloidal nanocrystals have advanced in size and surface properties, leading to potential applications in optoelectronics and quantum materials.
  • The study focuses on two-dimensional BiSe crystals with controlled thickness, exploring the transition of a topological insulator as it shifts from three to two dimensions.
  • Results reveal an 8 nm wide edge state around specific BiSe structures and discuss its characteristics using advanced theoretical models, also suggesting the possible state density for future devices.
View Article and Find Full Text PDF

Manganese is an attractive element for sustainable solutions. It is largely available in the earth's crust, making it ideal for cost-effective and large-scale applications. Especially MnO nanoparticles have recently received attention for applications in battery technology.

View Article and Find Full Text PDF

Two-dimensional (2D) rare-earth oxides (REOs) are a large family of materials with various intriguing applications and precise facet control is essential for investigating new properties in the 2D limit. However, a bottleneck remains with regard to obtaining their 2D single crystals with specific facets because of the intrinsic non-layered structure and disparate thermodynamic stability of different facets. Herein, for the first time, we achieve the synthesis of a wide variety of high-quality 2D REO single crystals with tailorable facets via designing a hard-soft-acid-base couple for controlling the 2D nucleation of the predetermined facets and adjusting the growth mode and direction of crystals.

View Article and Find Full Text PDF

In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems.

View Article and Find Full Text PDF

Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species.

View Article and Find Full Text PDF

In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize.  It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale.

View Article and Find Full Text PDF

Compared to van der Waals two-dimensional (2D) layers with lateral covalent bonds, metallic bonding systems favor close-packed structures, and thus, free-standing 2D metals have remained, for the most part, elusive. However, a number of theoretical studies suggest a number of metals can exist as 2D materials and a few early experiments support this notion. Here we demonstrate free-standing single-atom-thick crystalline chromium (Cr) suspended membranes using aberration-corrected transmission electron microscopy and image simulations.

View Article and Find Full Text PDF

Developing a precise and reproducible bandgap tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Towards this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional (2D) materials. A one-to-one correspondence with an ideal linear working curve is established between the bandgap of MoS and the sphere diameter in a continuous range as large as 360 meV.

View Article and Find Full Text PDF

Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo Ti C is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo Ti C under electron irradiation is investigated.

View Article and Find Full Text PDF

Graphene and its derivatives such as functionalized graphene are considered to hold significant promise in numerous applications. Within that context, halogen functionalization is exciting for radical and nucleophilic substitution reactions as well as for the grafting of organic moieties. Historically, the successful covalent doping of sp carbon with halogens, such as bromine, was demonstrated with carbon nanotubes.

View Article and Find Full Text PDF

Investigations on monolayered transition metal dichalcogenides (TMDs) and TMD heterostructures have been steadily increasing over the past years due to their potential application in a wide variety of fields such as microelectronics, sensors, batteries, solar cells, and supercapacitors, among others. The present work focuses on the characterization of TMDs using transmission electron microscopy, which allows not only static atomic resolution but also investigations into the dynamic behavior of atoms within such materials. Herein, we present a body of recent research from the various techniques available in the transmission electron microscope to structurally and analytically characterize layered TMDs and briefly compare the advantages of TEM with other characterization techniques.

View Article and Find Full Text PDF

Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic compounds, are materials composed of a few atomic layers of transition metal carbides, nitrides, or carbonitrides. Ti3C2, the first 2D layered MXene, was isolated in 2011. This material, which is a layered bulk material analogous to graphite, was derived from its 3D phase, Ti3AlC2 MAX.

View Article and Find Full Text PDF

Platinum telluride (PtTe), a member of metallic noble-transition-metal dichalcogenides (MNTMDs), has emerged as an indispensable candidate for superconducting, magnetic, and other electronic phase engineering, as well as optic applications. Herein, we report the van der Waals epitaxy of high-crystalline few-layer PtTe crystals on inert mica. Density functional theory calculations are used to illustrate a type-II Dirac cone along the Γ-A direction in the PtTe crystal.

View Article and Find Full Text PDF

Modern aberration corrected transmission electron microscopes offer the potential for electron beam sensitive materials, such as graphene, to be examined with low energy electrons to minimize, and even avoid, damage while still affording atomic resolution, and thus providing excellent characterization. Here in this review, the exploits in which the electron beam interactions, which are often considered negative, are explored to usefully drive a wealth of chemistry in and around graphene, importantly, with no other external stimuli. After introducing the technique, this review covers carbon phase reactions between amorphous carbon, graphene, fullerenes, carbon chains, and carbon nanotubes.

View Article and Find Full Text PDF

The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz.

View Article and Find Full Text PDF

During start-up and shut-down operations of fuel cells, high potential is inevitably experienced at cathode, which leads to the deterioration of the oxygen reduction electrocatalyst. The design of catalysts that can repair themselves under severe conditions has been identified as a primary challenge for fuel cells. Herein, self-supported PdAuCu branched nanostructure is synthesized by a hydrothermal method.

View Article and Find Full Text PDF

To synthesize graphene by chemical vapor deposition (CVD) both in large area and with uniform layer number directly over Si/SiO has proven challenging. The use of catalytically active metal substrates, in particular Cu, has shown far greater success and therefore is popular. That said, for electronics applications it requires a transfer procedure, which tends to damage and contaminate the graphene.

View Article and Find Full Text PDF

Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS/WS vertical heterostructure.

View Article and Find Full Text PDF

The controllable synthesis of uniform tungsten diselenide (WSe ) is crucial for its emerging applications due to the high sensitivity of its extraordinary physicochemical properties to its layer numbers. However, undesirable multilayer regions inevitably form during the fabrication of WSe via the traditional chemical vapor deposition process resulted from the lack of significantly energetically favorable competition between layer accumulation and size expansion. This work innovatively introduces Cu to occupy the hexagonal site positioned at the center of the six membered ring of the WSe surface, thus filtrates the undesired reaction path through precisely thermodynamical control and achieves self-limited growth WSe crystals.

View Article and Find Full Text PDF

based on a liquid substrate can succinctly transfer high-quality, wafer-size, and contamination-free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high-quality and large-area graphene for fundamental research and industrial applications.

View Article and Find Full Text PDF

The self-assembly of two-dimensional (2D) nanomaterials, an emerging research area, still remains largely unexplored. The strong interlayer attraction between 2D nanosheets leads to face-to-face stacking rather than edge-to-edge coupling. We demonstrate, for the first time, how one can induce and control an edge-to-edge self-assembly process for 2D nanomaterials.

View Article and Find Full Text PDF