Publications by authors named "Rafael Furlan de Oliveira"

Small-molecule analyte detection is key for improving quality of life, particularly in health monitoring through the early detection of diseases. However, detecting specific markers in complex multicomponent media using devices compatible with point-of-care (PoC) technologies is still a major challenge. Here, we introduce a novel approach that combines molecularly imprinted polymers (MIPs), electrolyte-gated transistors (EGTs) based on 2D materials, and machine learning (ML) to detect hippuric acid (HA) in artificial urine, being a critical marker for toluene intoxication, parasitic infections, and kidney and bowel inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • The introduction of biological drugs for treating cancers and autoimmune diseases has changed the medical landscape, but anti-drug antibodies (ADAs) can reduce their effectiveness.
  • Researchers developed an ambipolar electrolyte-gated transistor (EGT) immunosensor using reduced graphene oxide to detect low concentrations of ADAs specifically against Infliximab (IFX).
  • This new sensor is easy to make, operates at low voltages, delivers quick results, and can accurately measure ADAs even when competing with natural antagonists like TNF-α.
View Article and Find Full Text PDF

Health monitoring is experiencing a radical shift from clinic-based to point-of-care and wearable technologies, and a variety of nanomaterials and transducers have been employed for this purpose. 2D materials (2DMs) hold enormous potential for novel electronics, yet they struggle to meet the requirements of wearable technologies. Here, aiming to foster the development of 2DM-based wearable technologies, reduced graphene oxide (rGO)-based liquid-gated transistors (LGTs) for cation sensing in artificial sweat endowed with distinguished performance and great potential for scalable manufacturing is reported.

View Article and Find Full Text PDF

The development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno[3,2-][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>10) at low voltages (2 V), reaching state-of-the-art performance.

View Article and Find Full Text PDF

The electronic properties of two-dimensional semiconductors can be strongly modulated by interfacing them with atomically precise self-assembled molecular lattices, yielding hybrid van der Waals heterostructures (vdWHs). While proof-of-concepts exploited molecular assemblies held together by lateral unspecific van der Waals interactions, the use of 2D supramolecular networks relying on specific non-covalent forces is still unexplored. Herein, prototypical hydrogen-bonded 2D networks of cyanuric acid (CA) and melamine (M) are self-assembled onto MoS and WSe forming hybrid organic/inorganic vdWHs.

View Article and Find Full Text PDF

Chemical sensing is a strategic field of science and technology ultimately aiming at improving the quality of our lives and the sustainability of our Planet. Sensors bear a direct societal impact on well-being, which includes the quality and composition of the air we breathe, the water we drink, and the food we eat. Pristine low-dimensional materials are widely exploited as highly sensitive elements in chemical sensors, although they suffer from lack of intrinsic selectivity towards specific analytes.

View Article and Find Full Text PDF

Solution-processed semiconducting transition metal dichalcogenides are at the centre of an ever-increasing research effort in printed (opto)electronics. However, device performance is limited by structural defects resulting from the exfoliation process and poor inter-flake electronic connectivity. Here, we report a new molecular strategy to boost the electrical performance of transition metal dichalcogenide-based devices via the use of dithiolated conjugated molecules, to simultaneously heal sulfur vacancies in solution-processed transition metal disulfides and covalently bridge adjacent flakes, thereby promoting percolation pathways for the charge transport.

View Article and Find Full Text PDF

Organic diodes and molecular rectifiers are fundamental electronic devices that share one common feature: current rectification ability. Since both present distinct spatial dimensions and working principles, the rectification of organic diodes is usually achieved by interface engineering, while changes in molecular structures commonly control the molecular rectifiers' features. Here, we report on the first observation of temperature-driven inversion of the rectification direction (IRD) in ensemble molecular diodes (EMDs) prepared in a vertical stack configuration.

View Article and Find Full Text PDF

Nanomembranes (NMs) are freestanding structures with few-nanometer thickness and lateral dimensions up to the microscale. In nanoelectronics, NMs have been used to promote reliable electrical contacts with distinct nanomaterials, such as molecules, quantum dots, and nanowires, as well as to support the comprehension of the condensed matter down to the nanoscale. Here, we propose a tunable device architecture that is capable of deterministically changing both the contact geometry and the current injection in nanoscale electronic junctions.

View Article and Find Full Text PDF

Organic thin-film transistors (OTFTs) are an ever-growing subject of research, powering recent technologies such as flexible and wearable electronics. Currently, many studies are being carried out to push forward the state-of-the-art OTFT technology to achieve characteristics that include high carrier mobility, low power consumption, flexibility, and the ability to operate under harsh conditions. Here, we tackle this task by proposing a novel OTFT architecture exploring the so-called rolled-up nanomembrane technology to fabricate low-voltage (<2 V), ultracompact OTFTs.

View Article and Find Full Text PDF