A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1-CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis.
View Article and Find Full Text PDFBackground: The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters.
Methods: We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody.
Angiotensin-converting enzyme inhibitors (ACEi) are part of the indicated treatment in hypertensive African Americans. ACEi have blood pressure-independent effects that may make them preferred for certain patients. We aimed to evaluate the impact of ACEi on anti-fibrotic biomarkers in African American hypertensive patients with left ventricular hypertrophy (LVH).
View Article and Find Full Text PDFBackground: Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function.
View Article and Find Full Text PDFMelanoma is a highly malignant skin cancer with high propensity to metastasize and develop drug resistance, making it a difficult cancer to treat. Current therapies targeting BRAF (V600) mutations are initially effective, but eventually tumors overcome drug sensitivity and reoccur. This process is accomplished in part by reactivating alternate signaling networks that reinstate melanoma proliferative and survival capacity, mostly through reprogramming of receptor tyrosine kinase (RTK) signaling.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) and chronic pancreatitis are characterized by a dense collagen-rich desmoplastic reaction. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by collagens that can regulate cell proliferation, migration, adhesion, and remodeling of the extracellular matrix. To address the role of DDR1 in PDA, Ddr1-null (Ddr) mice were crossed with the Kras; Trp53; Ptf1a (KPC) model of metastatic PDA.
View Article and Find Full Text PDFThe Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site.
View Article and Find Full Text PDFTissue inhibitor of metalloproteinases-1 (TIMP-1) is a pleiotropic protein, promoting both tumor-suppressive and tumor-promoting activities. While TIMP-1 is primarily known as an endogenous inhibitor of matrix metalloproteinases (MMPs) and thus associated with tumor cell invasion, clinical studies demonstrated increased expression of TIMP-1 and its association with poor prognosis in cancer. Non-MMP-inhibitory and oncogenic functions of TIMP-1 are mediated by induction of intracellular signaling via its cell surface receptor CD63, a tetraspanin.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
November 2019
Background: Discoidin Domain Receptors (DDRs) are membrane-tethered proteins of the receptor tyrosine kinase family, which signal in response to collagen. DDR expression is associated with human diseases, including fibrosis and cancer. The role of DDRs in human pathogenesis is mediated by dysregulated receptor function in response to the collagenous milieu.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2019
Quantitative assessment of MT1-MMP cell surface-associated proteolytic activity remains undefined. Presently, MT1-MMP was stably expressed and a cell-based FRET assay developed to quantify activity toward synthetic collagen-model triple-helices. To estimate the importance of cell surface localization and specific structural domains on MT1-MMP proteolysis, activity measurements were performed using a series of membrane-anchored MT1-MMP mutants and compared directly with those of soluble MT1-MMP.
View Article and Find Full Text PDFDiscoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that signal in response to collagen. We had previously shown that collagen binding leads to clustering of DDR1b, a process partly mediated by its extracellular domain (ECD). In this study, we investigated (i) the impact of the oligomeric state of DDR2 ECD on collagen binding and fibrillogenesis, (ii) the effect of collagen binding on DDR2 clustering, and (iii) the spatial distribution and phosphorylation status of DDR1b and DDR2 after collagen stimulation.
View Article and Find Full Text PDFThe importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2.
View Article and Find Full Text PDFBackground: Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis.
Methods: The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN).
ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J.
View Article and Find Full Text PDFReceptor kinases Discoidin Domain Receptors (DDRs) 1 and 2 are emerging as new therapeutic targets in breast cancer (BC). However, the expression of DDR proteins during BC progression and their association with BC subtypes remain poorly defined. Herein we report the first comprehensive immunohistochemical analyses of DDR protein expression in a wide range of breast tissues.
View Article and Find Full Text PDFThe epithelial-to-mesenchymal transition (EMT) process allows carcinoma cells to dissociate from the primary tumor thereby facilitating tumor cell invasion and metastasis. Ras-dependent hyperactive signaling is commonly associated with tumorigenesis, invasion, EMT, and metastasis. However, the downstream effectors by which Ras regulates EMT remain ill defined.
View Article and Find Full Text PDFUnlabelled: Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT).
View Article and Find Full Text PDFLoss of BRCA2 function stimulates prostate cancer (PCa) cell invasion and is associated with more aggressive and metastatic tumors in PCa patients. Concurrently, the receptor tyrosine kinase c-kit is highly expressed in skeletal metastases of PCa patients and induced in PCa cells placed into the bone microenvironment in experimental models. However, the precise requirement of c-kit for intraosseous growth of PCa and its relation to BRCA2 expression remain unexplored.
View Article and Find Full Text PDFDiscoidin domain receptor 1 (DDR1) belongs to a unique family of receptor tyrosine kinases that signal in response to collagens. DDR1 undergoes autophosphorylation in response to collagen binding with a slow and sustained kinetics that is unique among members of the receptor tyrosine kinase family. DDR1 dimerization precedes receptor activation suggesting a structural inhibitory mechanism to prevent unwarranted phosphorylation.
View Article and Find Full Text PDFProstate cancer is the most frequently diagnosed cancer and the second leading cause of death in males in the United States. Using human prostate cancer specimens, the authors have previously shown that elevated expression levels of 12-lipoxygenase (12-LOX) occurred more frequently in advanced stage, high-grade prostate cancer, suggesting that 12-LOX expression is associated with carcinoma progression and invasion. Previous reports from their group and others have shown that 12-LOX is a positive modulator of invasion and metastasis; however, the mechanism remains unclear.
View Article and Find Full Text PDFThe discoidin domain receptors (DDRs) are receptor tyrosine kinases that upon binding to collagens undergo receptor phosphorylation, which in turn activates signal transduction pathways that regulate cell-collagen interactions. We report here that collagen-dependent DDR1 activation is partly regulated by the proteolytic activity of the membrane-anchored collagenases, MT1-, MT2-, and MT3-matrix metalloproteinase (MMP). These collagenases cleave DDR1 and attenuate collagen I- and IV-induced receptor phosphorylation.
View Article and Find Full Text PDFOcimum genus (a.k.a holy basil or tulsi) is a dietary herb used for its multiple beneficial pharmacologic properties including anti-cancer activity.
View Article and Find Full Text PDF