The Tocantins-Araguaia Basin is one of the largest river systems in South America, located entirely within Brazilian territory. In the last decades, capital-concentrating activities such as agribusiness, mining, and hydropower promoted extensive changes in land cover, hydrology, and environmental conditions. These changes are jeopardizing the basin's biodiversity and ecosystem services.
View Article and Find Full Text PDFAim: To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only.
Location: Global.
Methods: SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species.
Red Lists of threatened species play a critical role in conservation science and practice. However, policy-making based on Red Lists ignores ecological and evolutionary consequences of losing biodiversity because these lists focus on species alone. To decide if relying on Red Lists alone can help to conserve communities' functional (FD) and phylogenetic (PD) diversity, it is useful to evaluate whether Red List categories represent species with diverse ecological traits and evolutionary histories.
View Article and Find Full Text PDFIn an effort to avoid species loss, scientists have focused their efforts on the mechanisms making some species more prone to extinction than others. However, species show different responses to threats given their evolutionary history, behavior, and intrinsic biological features. We used bird biological features and external threats to (1) understand the multiple pathways driving Brazilian bird species to extinction, (2) to investigate if and how extinction risk is geographically structured, and (3) to quantify how much diversity is currently represented inside protected areas.
View Article and Find Full Text PDFBackground: We evaluated the direct and indirect influence of climate, land use, phylogenetic structure, species richness and endemism on the distribution of New World threatened amphibians.
Methodology/principal Findings: We used the WWF's New World ecoregions, the WWFs amphibian distributional data and the IUCN Red List Categories to obtain the number of threatened species per ecoregion. We analyzed three different scenarios urgent, moderate, and the most inclusive scenario.
Spatial conservation prioritization should seek to anticipate climate change impacts on biodiversity and to mitigate these impacts through the development of dynamic conservation plans. Here, we defined spatial priorities for the conservation of amphibians inhabiting the Atlantic Forest Biodiversity Hotspot that overcome the likely impacts of climate change on the distribution of this imperiled fauna. First, we built ecological niche models (ENMs) for 431 amphibian species both for current time and for the mid-point of a 30-year period spanning 2071-2099 (i.
View Article and Find Full Text PDFBackground: In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection.
Methodology/principal Findings: We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest.
Background: Prioritization schemes usually highlight species-rich areas, where many species are at imminent risk of extinction. To be ecologically relevant these schemes should also include species biological traits into area-setting methods. Furthermore, in a world of limited funds for conservation, conservation action is constrained by land acquisition costs.
View Article and Find Full Text PDFBackground: In the Neotropics, nearly 35% of amphibian species are threatened by habitat loss, habitat fragmentation, and habitat split; anuran species with different developmental modes respond to habitat disturbance in different ways. This entails broad-scale strategies for conserving biodiversity and advocates for the identification of high conservation-value regions that are significant in a global or continental context and that could underpin more detailed conservation assessments towards such areas.
Methodology/principal Findings: We identified key ecoregion sets for anuran conservation using an algorithm that favors complementarity (beta-diversity) among ecoregions.