Publications by authors named "Rafael Counago"

RA-0003022 () was identified as a high-quality covalent chemical probe for nsP2 cysteine protease (nsP2pro). Isoxazole covalently captured the active site C478 and inactivated the enzyme with a / ratio of 6000 Ms. A negative control analog RA-0025453 () retained the covalent warhead but demonstrated >100-fold decrease in enzyme inhibition.

View Article and Find Full Text PDF

Nontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections.

View Article and Find Full Text PDF
Article Synopsis
  • Chikungunya virus (CHIKV) is a mosquito-borne virus causing major outbreaks, with no FDA-approved treatments available.
  • Researchers optimized a screening assay for CHIKV's essential protein nsP2 and identified 153 potential drug candidates, including RA-0002034.
  • RA-0002034 effectively inhibits CHIKV nsP2 activity and viral replication, making it a promising compound for future therapeutic development against CHIKV and similar viruses.
View Article and Find Full Text PDF

The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against β-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the pyrazolo[1,5-]pyrimidine scaffold possess outstanding potency and selectivity for CSNK2, but bioavailability and metabolic stability are often challenging.

View Article and Find Full Text PDF

The pyrazolo[1,5-]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against β-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket.

View Article and Find Full Text PDF

Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses.

View Article and Find Full Text PDF

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity.

View Article and Find Full Text PDF

The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors.

View Article and Find Full Text PDF

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm.

View Article and Find Full Text PDF

Two routes to the antimalarial diaminopyrimidine were developed based on the C-6 metalation of suitable 2,4-dichloro-5-alkoxy pyrimidines using (TMP)Zn·2MgCl·2LiCl base. One approach involves a late-stage modification of the C-6 position, while the other allows for tail fragment modification of . Both routes have proven reliable in synthesizing , as well as eight analogues.

View Article and Find Full Text PDF
Article Synopsis
  • The TcK2 protein kinase of Trypanosoma cruzi is similar to the human kinase PERK and is crucial for the parasite's proliferation in mammalian cells; its absence leads to increased differentiation into infective forms.
  • A study confirmed that TcK2-null cells express proteins associated with infective stages and showed decreased phosphorylation of factors that promote growth, resulting in lower proliferation rates.
  • Screening of 379 kinase inhibitors identified Dasatinib and PF-477736 as effective inhibitors of TcK2, with Dasatinib showing potential as a therapeutic target for Chagas disease due to its selective efficacy against normal amastigotes but not against TcK2-depleted parasites.
View Article and Find Full Text PDF

Here, we report a bioluminescence resonance energy transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human transient receptor potential mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically relevant environment of lysosomes.

View Article and Find Full Text PDF

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial.

View Article and Find Full Text PDF
Article Synopsis
  • A study cloned and tested 129 rice protein kinases for expression and screened 40 of them against 627 diverse kinase inhibitors using differential scanning fluorimetry (DSF).
  • Out of the 37 active compounds identified, 14 significantly reduced primary root length in Arabidopsis, indicating they could inhibit root development by targeting specific receptors like PSKR1.
  • Notably, compound RAF265 was found to bind both human and rice kinases, suggesting that human kinase inhibitors could be effective tools for exploring the functions of plant kinases.
View Article and Find Full Text PDF

New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps.

View Article and Find Full Text PDF

The discovery of potent and selective inhibitors for understudied kinases can provide relevant pharmacological tools to illuminate their biological functions. DYRK1A and DYRK1B are protein kinases linked to chronic human diseases. Current DYRK1A/DYRK1B inhibitors also antagonize the function of related protein kinases, such as CDC2-like kinases (CLK1, CLK2, CLK4) and DYRK2.

View Article and Find Full Text PDF

Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, , targeting a poorly conserved cysteine in the kinase's hinge region.

View Article and Find Full Text PDF

The Protein Kinase N proteins (PKN1, PKN2 and PKN3) are Rho GTPase effectors. They are involved in several biological processes such as cytoskeleton organization, cell mobility, adhesion, and cell cycle. Recently PKNs have been reported as essential for survival in several tumor cell lines, including prostate and breast cancer.

View Article and Find Full Text PDF

() has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter.

View Article and Find Full Text PDF

CAMKK2 is a serine/threonine kinase and an activator of AMPK whose dysregulation is linked with multiple diseases. Unfortunately, STO-609, the tool inhibitor commonly used to probe CAMKK2 signaling, has limitations. To identify promising scaffolds as starting points for the development of high-quality CAMKK2 chemical probes, we utilized a hinge-binding scaffold hopping strategy to design new CAMKK2 inhibitors.

View Article and Find Full Text PDF

is the causative agent of Buruli ulcer, a debilitating chronic disease that mainly affects the skin. Current treatments for Buruli ulcer are efficacious, but rely on the use of antibiotics with severe side effects. The enzyme dihydrofolate reductase (DHFR) plays a critical role in the biosynthesis of folate species and is a validated target for several antimicrobials.

View Article and Find Full Text PDF

Our understanding of regulatory factors in Leishmania differentiation has long been restricted by the available genetic tools, but the availability of CRISPR/Cas9 has changed the landscape forever. Recently, Baker and Catta-Preta et al. applied Cas9 editing and kinome-wide bar-seq to dissect the function of 204 kinases in the Leishmania mexicana life cycle.

View Article and Find Full Text PDF

This paper focuses on new derivatives bearing an oxetane group to extend accessible chemical space for further identification of kinase inhibitors. The ability to modulate kinase activity represents an important therapeutic strategy for the treatment of human illnesses. Known as a nonclassical isoster of the carbonyl group, due to its high polarity and great ability to function as an acceptor of hydrogen bond, oxetane seems to be an attractive and underexplored structural motif in medicinal chemistry.

View Article and Find Full Text PDF

Deoxyhypusine synthase (DHS) catalyzes the first step of the post-translational modification of eukaryotic translation factor 5A (eIF5A), which is the only known protein containing the amino acid hypusine. Both proteins are essential for eukaryotic cell viability, and DHS has been suggested as a good candidate target for small molecule-based therapies against eukaryotic pathogens. In this work, we focused on the DHS enzymes from Brugia malayi and Leishmania major, the causative agents of lymphatic filariasis and cutaneous leishmaniasis, respectively.

View Article and Find Full Text PDF

The biological function of plant mitochondrial uncoupling proteins (pUCPs) has been a matter of considerable controversy. For example, the pUCP capacity to uncouple respiration from ATP synthesis in vivo has never been fully acknowledged, in contrast to the mammalian UCP1 (mUCP1) role in uncoupling respiration-mediated thermogenesis. Interestingly, both pUCPs and mUCPs have been associated with stress response and metabolic perturbations.

View Article and Find Full Text PDF