AbstractFire events change background color, impairing camouflage strategies. However, selection for polymorphic populations may increase camouflage and survival by reducing predation risks. We conducted experiments addressing background selection and predation pressures on the effectiveness of arthropod camouflage against predation in burned and unburned trunks.
View Article and Find Full Text PDFBackground matching and disruptive coloration are common camouflage strategies in nature, but few studies have accurately measured their protective value in living organisms. Amazon's Bark praying mantises exhibit colour patterns matching whitish and greenish-brown tree trunks. We tested the functional significance of background matching and disruptive coloration of different praying mantis morphospecies (white, grey and green) detected by DNA barcoding.
View Article and Find Full Text PDFAlthough numerous studies about camouflage have been conducted in the last few decades, there is still a significant gap in our knowledge about the magnitude of protective value of different camouflage strategies in prey detection and survival. Furthermore, the functional significance of several camouflage strategies remains controversial. Here we carried out a comprehensive meta-analysis including comparisons of different camouflage strategies as well as predator and prey types, considering two response variables: mean predator search time (ST) (63 studies) and predator attack rate (AR) of camouflaged prey (28 studies).
View Article and Find Full Text PDFCamouflage has been a textbook example of natural selection and adaptation since the time of the earliest evolutionists. However, aside from correlational evidence and studies using artificial dummy prey, experiments directly showing that better camouflaged prey to predator vision are at reduced risk of attack are lacking. Here, we show that the level of camouflage achieved through colour adjustments towards the appearance of seaweed habitats is adaptive in reducing predation pressure in the prawn Hippolyte obliquimanus.
View Article and Find Full Text PDF