Publications by authors named "Rafael Borba Rosa"

Article Synopsis
  • Intensive antihyperglycemic treatment in diabetes can reduce serious complications, and this study looked at how insulin affects mitochondrial function in hyperglycemic rats.
  • Hyperglycemic rats showed energy deficiencies in specific tissues, with the heart being the most affected, and insulin treatment helped reverse some of this damage.
  • In vitro experiments indicated that oxidative stress from compounds like methylglyoxal and advanced glycation end products can harm mitochondria, suggesting the need for early and ongoing insulin therapy to protect mitochondrial function in diabetes.
View Article and Find Full Text PDF

Glutaryl-CoA dehydrogenase deficiency or glutaric acidemia type I (GA I) is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3OHGA) acids and clinically by severe neurological symptoms and structural brain abnormalities, manifested as progressive cerebral atrophy and acute striatum degeneration following encephalopathic crises, whose pathophysiology is still in debate. Considering that reactive astrogliosis is a common finding in brain of GA I patients, in the present study we investigated the effects of GA and 3OHGA on glial activity determined by S100B release by rat C6-glioma cells. We also evaluated the effects of these organic acids on some parameters of oxidative stress in these astroglial cells.

View Article and Find Full Text PDF

Quinolinic acid (QA) is found at increased concentrations in brain of patients affected by various common neurodegenerative disorders, including Huntington's and Alzheimer's diseases. Considering that the neuropathology of these disorders has been recently attributed at least in part to energy deficit, in the present study we investigated the in vitro effect of QA (0.1-100 microM) on various parameters of energy metabolism, such as glucose uptake, (14)CO(2) production and lactate production, as well as on the activities of the respiratory chain complexes I-V, the citric acid cycle (CAC) enzymes, creatine kinase (CK), lactate dehydrogenase (LDH) and Na(+),K(+)-ATPase and finally the rate of oxygen consumption in brain of 30-day-old rats.

View Article and Find Full Text PDF

Patients affected by medium-chain acyl CoA dehydrogenase (MCAD) deficiency, a frequent inborn error of metabolism, suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. In the present study, we investigated the in vitro effect of the medium-chain fatty acids (MCFA), at concentrations varying from 0.

View Article and Find Full Text PDF

L-2-hydroxyglutaric acid (LGA) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-OHGA), an inherited neurometabolic disorder characterized by progressive neurodegeneration with cerebellar and pyramidal signs, mental deterioration, epilepsy, and subcortical leukoencephalopathy. Because the underlying mechanisms of the neuropathology of this disorder are virtually unknown, in this study we tested the in vitro effect of LGA on various parameters of oxidative stress, namely, chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), protein carbonyl formation (PCF), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), and the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in cerebellum and cerebral cortex of 30-day-old rats. LGA significantly increased chemiluminescence, TBA-RS, and PCF measurements and markedly decreased TAR values in cerebellum, in contrast to TRAP and the activity of the antioxidant enzymes, which were not altered by the acid.

View Article and Find Full Text PDF

Large amounts of d-2-hydroxyglutaric acid (DGA) accumulate in d-2-hydroxyglutaric aciduria (D-2-OHGA), an inherited neurometabolic disorder characterized by severe neurological dysfunction and cerebral atrophy. Despite the significant brain abnormalities, the neurotoxic mechanisms of brain injury in this disease are virtually unknown. In this work, the in vitro effect of DGA on various parameters of oxidative stress was investigated; namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) and the activities of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase in cerebral cortex from 30-day-old-rats.

View Article and Find Full Text PDF

Glutaryl-CoA dehydrogenase deficiency (GDD) is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of glutaric, 3-hydroxyglutaric (3-OHGA) and glutaconic acids and clinically by severe neurological symptoms and cerebral atrophy whose pathophysiology is poorly known. In the present study we investigated the effect of 3-OHGA, considered the main neurotoxin in GDD, on the lipoperoxidation parameters chemiluminescence and thiobarbituric acid-reactive species (TBA-RS), and on the amount of nitric oxide metabolites in cerebral cortex of young rats. Total radical-trapping antioxidant potential (TRAP), which reflects the tissue antioxidant defenses, was also examined.

View Article and Find Full Text PDF