Nestedness and modularity have been found in many species interaction networks. Despite being conceptually distinct, negatively correlated and having different causes, these patterns often co-occur. A realistic but seldom investigated alternative to these simple topologies is hierarchical compound networks, in which the entire network is modular, and modules are internally nested.
View Article and Find Full Text PDFInteraction network structure reflects the ecological mechanisms acting within biological communities, which are affected by environmental conditions. In tropical forests, higher precipitation usually increases fruit production, which may lead frugivores to increase specialization, resulting in more modular and less nested animal-plant networks. In these ecosystems, El Niño is a major driver of precipitation, but we still lack knowledge of how species interactions change under this influence.
View Article and Find Full Text PDFHow are ecological systems assembled? Identifying common structural patterns within complex networks of interacting species has been a major challenge in ecology, but researchers have focused primarily on single interaction types aggregating in space or time. Here, we shed light on the assembly rules of a multilayer network formed by frugivory and nectarivory interactions between bats and plants in the Neotropics. By harnessing a conceptual framework known as the integrative hypothesis of specialization, our results suggest that phylogenetic constraints separate species into different layers and shape the network's modules.
View Article and Find Full Text PDFNestedness and modularity have been recurrently observed in species interaction networks. Some studies argue that those topologies result from selection against unstable networks, and others propose that they likely emerge from processes driving the interactions between pairs of species. Here we present a model that simulates the evolution of consumer species using resource species following simple rules derived from the integrative hypothesis of specialization (IHS).
View Article and Find Full Text PDFIdentifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system.
View Article and Find Full Text PDFOne of the unresolved issues in the ecology of parasites is the relationship between host specificity and performance. Previous studies tested this relationship in different systems and obtained all possible outcomes. This led to the proposal of two hypotheses to explain conflicting results: the trade-off and resource breadth hypotheses, which are treated as mutually exclusive in the literature and were corroborated by different studies.
View Article and Find Full Text PDF