Making use of the recently derived, all-spin, opposite-helicity Compton amplitude, we calculate the classical gravitational scattering amplitude for one spinning and one spinless object at O(G^{2}) and all orders in spin. By construction, this amplitude exhibits the spin structure that has been conjectured to describe Kerr black holes. This spin structure alone is not enough to fix all deformations of the Compton amplitude by contact terms, but when combined with considerations of the ultrarelativistic limit we can uniquely assign values to the parameters remaining in the even-in-spin sector.
View Article and Find Full Text PDFA nontrivial S matrix generally implies a production of entanglement: starting with an incoming pure state, the scattering generally returns an outgoing state with nonvanishing entanglement entropy. It is then interesting to ask if there exists a nontrivial S matrix that generates no entanglement. In this Letter, we argue that the answer is the S-matrix for the scattering of classical black holes.
View Article and Find Full Text PDF