Publications by authors named "Raed Al-Saharin"

Generating new strategies to improve plant performance and yield in crop plants becomes increasingly relevant with ongoing and predicted global climate changes. E3 ligases that function as key regulators within the ubiquitin proteasome pathway often are involved in abiotic stress responses, development, and metabolism in plants. The aim of this research was to transiently downregulate an E3 ligase that uses BTB/POZ-MATH proteins as substrate adaptors in a tissue-specific manner.

View Article and Find Full Text PDF

Cullin-based RING E3 ligases that use BTB/POZ-MATH (BPM) proteins as substrate receptors have been established over the last decade as critical regulators in plant development and abiotic stress tolerance. As such they affect general aspects of shoot and root development, flowering time, embryo development, and different abiotic stress responses, such as heat, drought and salt stress. To generate tools that can help to understand the role of CRL3 E3 ligases in plants, we developed a novel system using two conserved protein-binding motifs from BPM substrates to transiently block CRL3 activity.

View Article and Find Full Text PDF

Plants, as sessile organisms, have limited means to cope with environmental changes. Consequently, they have developed complex regulatory systems to ameliorate abiotic stresses im-posed by environmental changes. One such system is the ubiquitin proteasome pathway, which utilizes E3 ligases to target proteins for proteolytic degradation via the 26S proteasome.

View Article and Find Full Text PDF

Rapid response to environmental changes and abiotic stress to coordinate developmental programs is critical for plants. To accomplish this, plants use the ubiquitin proteasome pathway as a flexible and efficient mechanism to control protein stability and to direct cellular reactions. Here, we show that all three members of the R2R3 S23 MYB transcription factor subfamily, MYB1, MYB25, and MYB109, are degraded by the 26S proteasome, likely facilitated by a CUL3-based E3 ligase that uses MATH-BTB/POZ proteins as substrate adaptors.

View Article and Find Full Text PDF

The turnip has important economic value and represents a good model system to study gene function in crop plants. ERF/AP2 transcription factors are a major group of proteins that are often involved in regulating stress-responses and developmental programs. Some ERF/AP2 proteins are targets of CULLIN3-based E3 ligases that use BTB/POZ-MATH proteins as substrate receptors.

View Article and Find Full Text PDF