Publications by authors named "Raed A Al Juboori"

Article Synopsis
  • Pharmaceuticals are commonly found in aquatic ecosystems, highlighting the need for affordable removal methods from water.
  • A novel activated carbon produced from pinewood was developed through a sequence of treatments, showing effective adsorption of the drugs diclofenac and ciprofloxacin.
  • The activated carbon demonstrated over 95% removal efficiency for pharmaceuticals in water and 90% in real wastewater, maintaining its effectiveness across six usage cycles.
View Article and Find Full Text PDF

Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups.

View Article and Find Full Text PDF
Article Synopsis
  • The Danube River faces significant environmental challenges due to industrial discharges and wastewater treatment effluents, which threaten its aquatic ecosystem.
  • A study monitored 16 Polycyclic Aromatic Hydrocarbons (PAHs) at six sites over a year, revealing seasonal fluctuations in PAH concentrations that exceeded safe levels set by the Europe Drinking Water Directive.
  • Despite sediment PAH levels being generally low, certain compounds raised concerns for potential biological impacts and highlighted a high Individual Lifetime Cancer Risk for both adults and children at all sampling locations.
View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the levels of 16 Polycyclic Aromatic Hydrocarbons (PAHs) in Lake Balaton's sediment over a year, noting seasonal variations in concentrations.
  • PAH levels were highest in winter (448.35 to 619.77 ng/g) and lowest in summer (257.21 to 465.49 ng/g), with higher concentrations of high molecular weight PAHs compared to low molecular weight ones.
  • The research indicated a significant cancer risk for both adults and children across all seasons, particularly high in winter, while most ecological impacts from PAHs were minimal, except for slightly elevated levels of acenaphthylene and fluorene in autumn and spring, respectively.
View Article and Find Full Text PDF

Due to the growing concerns about pharmaceutical contamination and its devastating impact on the economy and the health of humans and the environment, developing efficient approaches for removing such contaminants has become essential. Adsorption is a cost-effective technique for removing pollutants. Thus, in this work, banana peels as agro-industrial waste were utilized for synthesizing activated carbon for removing pharmaceuticals, namely amoxicillin and carbamazepine from different water matrices.

View Article and Find Full Text PDF

This study endeavors to develop cost-effective environmentally friendly technology for removing harmful residual pharmaceuticals from water and wastewater by utilizing the effective adsorption of pistachio shell (PS) biochar and the degradation potency of laccase immobilized on the biochar (L@PSAC). The carbonatization and activation of the shells were optimized regarding temperature, time, and NHNO/PS ratio. This step yielded an optimum PS biochar (PSAC) with the highest porosity and surface area treated at 700 °C for 3 h using an NHNO/PS ratio of 3% wt.

View Article and Find Full Text PDF

Membrane technology has shown a promising role in combating water scarcity, a globally faced challenge. However, the disposal of end-of-life membrane modules is problematic as the current practices include incineration and landfills as their final fate. In addition, the increase in population and lifestyle advancement have significantly enhanced waste generation, thus overwhelming landfills and exacerbating environmental repercussions and resource scarcity.

View Article and Find Full Text PDF

The olive stone is a large waste product of the olive oil extraction industry. The present study investigates developing activated carbon from olive stone waste (OSAC) to remove pharmaceuticals from water. Different temperatures and olive stone: KOH ratios were studied.

View Article and Find Full Text PDF

This study examined the use of modified multiwall carbon nanotubes (M-MWCNTs) with immobilized laccase (L@M-MWCNTs) for removing ciprofloxacin (Cip), carbamazepine (Cbz), diclofenac (Dcf), benzo[a]pyrene (Bap), and anthracene (Ant) from different water samples. The synthesized materials were characterized using an array of advanced analytical techniques. The physical immobilization of laccase onto M-MWCNTs was confirmed through Scanning electron microscope (SEM)-dispersive X-ray spectroscopy (EDS) analysis and Brunner-Emmet-Teller (BET) surface area measurements.

View Article and Find Full Text PDF

Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation.

View Article and Find Full Text PDF

Vacuum membrane distillation (VMD) has attracted increasing interest for various applications besides seawater desalination. Experimental testing of membrane technologies such as VMD on a pilot or large scale can be laborious and costly. Machine learning techniques can be a valuable tool for predicting membrane performance on such scales.

View Article and Find Full Text PDF

In this study, pomegranate peels (PPs) as an abundant fruit processing waste was used to produce cost-effective, eco-friendly, and high-quality activated carbon. The produced carbon (fossil free activated carbon) was used for immobilizing laccase to remove a range of emerging pollutants namely diclofenac, amoxicillin, carbamazepine, and ciprofloxacin from water and wastewater. The loaded activated carbon by laccase (LMPPs) and the unloaded one (MPPs) were characterized using advanced surface chemistry analysis techniques.

View Article and Find Full Text PDF

This study addressed the fouling issue in membrane distillation (M.D.) technology, a promising method for water purification and wastewater reclamation.

View Article and Find Full Text PDF

Membrane fouling remains a major obstacle to ultrafiltration. Due to their effectiveness and minimal energy demand, membranes have been extensively employed in water treatment. To improve the antifouling property of the PVDF membrane, a composite ultrafiltration membrane was created employing the in-situ embedment approach throughout the phase inversion process and utilizing a new 2D material, MAX phase TiALC.

View Article and Find Full Text PDF

Recent Iraqi battles against ISIS in 2014 and 2015 resulted in the destruction or severe damage to several refineries' infrastructure. This, along with other factors, has led to the release and accumulation of a wide range of hazardous chemicals into the environment, for instance, polycyclic aromatic hydrocarbons (PAH). Thus, for the first time, a comprehensive 16 PAHs measurements campaign over the course of six months near the oil refineries along the Tigris River and its estuaries was investigated.

View Article and Find Full Text PDF

In this work, MXene as a hydrophilic 2D nanosheet has been suggested to tailor the polyphenylsulfone (PPSU) flat sheet membrane characteristics via bulk modification. The amount of MXene varied in the PPSU casting solution from 0-1.5 wt.

View Article and Find Full Text PDF

The concerns regarding the reactive nitrogen levels exceeding the planetary limits are well documented in the literature. A large portion of anthropogenic nitrogen ends in wastewater. Nitrogen removal in typical wastewater treatment processes consumes a considerable amount of energy.

View Article and Find Full Text PDF

This study presented for the first time a comprehensive measurement campaign of 16 PAHs along the Euphrates River for five months, in both water and sediment samples. Our study revealed that the PAHs contamination increased along the flow direction due to the increasing non-point pollution and the return flows of agriculture. The 5-6 rings PAHs were dominant in water and sediment samples with an average of 42 % and 50 %, respectively.

View Article and Find Full Text PDF

In recent years, enzymatic remediation/biocatalysis has gained prominence for the bioremediation of recalcitrant chemicals. Laccase is one of the commonly investigated enzymes for bioremediation applications. There is a growing interest in immobilizing this enzyme onto adsorbents for achieving high pollutant removal through simultaneous adsorption and biodegradation.

View Article and Find Full Text PDF

This study reports on the impact of elevated recovery (i.e., 80%, 85%, and 90%) on the fouling and performance of air gap membrane distillation (AGMD) with real seawater and landfill leachate wastewater samples using polytetrafluoroethylene (PTFE) polymer membranes.

View Article and Find Full Text PDF

Membrane contactor technology affords great opportunities for nitrogen recovery from waste streams. This study presents a performance comparison between lab- and pilot-scale membrane contactors using landfill leachate samples. Polypropylene (PP) and polytetrafluoroethylene (PTFE) fibers in different dimensions were compared in terms of ammonia (NH) recovery on a lab scale using a synthetic ammonium solution.

View Article and Find Full Text PDF

Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales.

View Article and Find Full Text PDF

The interest in using natural coagulants for wastewater treatment has increased in recent years due to the environmental and health problems associated with the use of traditional coagulants. In this study, starch-based coagulants were tested to treat reject water produced by the dewatering of mesophilic digester sludge at the Viikinmäki wastewater treatment plant (WWTP) in Finland. The goal of this treatment is to prepare the stream for the nitrogen recovery process with membrane contactor technology.

View Article and Find Full Text PDF

The removal of inorganic arsenic (As) species from water using bone char pyrolyzed at 900 °C was investigated. Results revealed that the Sips model resulted in the best As(III) experimental data fit, while As(V) data were best represented by the Langmuir model. The adsorption rate and mechanisms of both As species were investigated using kinetic and diffusional models, respectively.

View Article and Find Full Text PDF

This study examined arsenite [As(III)], arsenate [As(V)] and fluoride (F) removal potential of bone char produced from sheep (Ovis aries) bone waste. Pyrolysis conditions tested were in the 500 °C-900 °C range, for a holding time of 1 or 2 h, with or without N gas purging. Previous bone char studies mainly focused on either low or high temperature range with limited information provided on As(III) removal.

View Article and Find Full Text PDF