Publications by authors named "Raechelle D' Sa"

The surge in multidrug-resistant bacteria against conventional antibiotics is a rapidly developing global health crisis necessitating novel infection management strategies. Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), offer a promising alternative to traditional antibiotics, but their practical translation is limited by their susceptibility to proteases and potential off-site cytotoxicity. In this paper, we investigate the feasibility of using gelatin emulsion gels (GELs), prepared using a water-in-oil (W/O) method, for the delivery of HDPs DJK-5 and IDR-1018 to improve their clinical utility.

View Article and Find Full Text PDF

Modern regenerative medicine approaches can rely on the fabrication of personalised medical devices and implants; however, many of these can fail due to infections, requiring antibiotics and revision surgeries. Given the rise in multidrug resistant bacteria, developing implants with antimicrobial activity without the use of traditional antibiotics is crucial for successful implant integration and improving patient outcomes. 3D printed gelatin-based implants have a broad range of applications in regenerative medicine due to their biocompatibility, ease of modification and degradability.

View Article and Find Full Text PDF

Healthcare associated infections (HCAI) represent a significant burden worldwide contributing to morbidity and mortality and result in substantial economic consequences equating to billions annually. Although the impacts of HCAI have been felt for many years, the coronavirus pandemic has had a profound effect, escalating rates of HCAI, even with extensive preventative measures such as vaccination, personal protective equipment, and deep cleaning regimes. Therefore, there is an urgent need for new solutions to mitigate this serious health emergency.

View Article and Find Full Text PDF

Human trabecular meshwork is a sieve-like tissue with large pores, which plays a vital role in aqueous humor outflow. Dysfunction of this tissue can occur, which leads to glaucoma and permanent vision loss. Replacement of trabecular meshwork with a tissue-engineered device is the ultimate objective.

View Article and Find Full Text PDF

Silane modification is a simple and cost-effective tool to modify existing biomaterials for tissue engineering applications. Aminosilane layer deposition has previously been shown to control NG108-15 neuronal cell and primary Schwann cell adhesion and differentiation by controlling deposition of ─NH groups at the submicron scale across the entirety of a surface by varying silane chain length. This is the first study toreport depositing 11-aminoundecyltriethoxysilane (CL11) onto aligned Polycaprolactone (PCL) scaffolds for peripheral nerve regeneration.

View Article and Find Full Text PDF

Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic.

View Article and Find Full Text PDF

Melt electro-writing (MEW) is a state-of-the-art technique that supports fabrication of 3D, precisely controlled and reproducible fiber structures. A standard MEW scaffold design is a box-structure, where a repeat layer of 90° boxes is produced from a single fiber. In 3D form (i.

View Article and Find Full Text PDF

Enriching a biomaterial surface with specific chemical groups has previously been considered for producing surfaces that influence cell response. Silane layer deposition has previously been shown to control mesenchymal stem cell adhesion and differentiation. However, it has not been used to investigate neuronal or Schwann cell responses in vitro to date.

View Article and Find Full Text PDF

The conjunctiva, an under-researched yet incredibly important tissue, plays key roles in providing protection to the eye and maintaining homeostasis of its ocular surface. Multiple diseases can impair conjunctival function leading to severe consequences that require surgical intervention. Small conjunctival defects can be repaired relatively easily, but larger defects rely on tissue grafts which generally do not provide adequate healing.

View Article and Find Full Text PDF

Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which to date, is the only modifiable risk factor associated with the development of glaucoma.

View Article and Find Full Text PDF

Titanium implants in orthopedic applications can fail due to infection and impaired integration into the host. Most research efforts that facilitate osseointegration of the implant have not considered infection, and vice versa. Moreover, most infection control measures involve the use of conventional antibiotics which contributes to the global epidemic of antimicrobial resistance.

View Article and Find Full Text PDF

As the current global threat of antimicrobial resistance (AMR) persists, developing alternatives to antibiotics that are less susceptible to resistance is becoming an urgent necessity. Recent advances in biomaterials have allowed for the development and fabrication of materials with discrete surface nanotopographies that can deter bacteria from adhering to their surface. Using binary polymer blends of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL) and varying their relative concentrations, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed thin films were developed with nanoisland, nanoribbon and nanopit topographies.

View Article and Find Full Text PDF

Microbial keratitis is a serious sight threatening infection affecting approximately two million individuals worldwide annually. While antibiotic eye drops remain the gold standard treatment for these infections, the significant problems associated with eye drop drug delivery and the alarming rise in antimicrobial resistance has meant that there is an urgent need to develop alternative treatments. In this work, a nitric oxide releasing contact lens gel displaying broad spectrum antimicrobial activity against two of the most common causative pathogens of microbial keratitis is described.

View Article and Find Full Text PDF

Silane modification has been proposed as a powerful biomaterial surface modification tool. This is the first comprehensive investigation into the effect of silane chain length on the resultant properties of -NH silane monolayers and the associated osteoinductive properties of the surface. A range of -NH presenting silanes, chain length 3-11, were introduced to glass coverslips and characterized using water contact angles, atomic force microscopy, X-ray photoelectron spectroscopy, and Ninhydrin assays.

View Article and Find Full Text PDF

The ability of nitric oxide (NO)-releasing polymer coatings to prevent biofilm formation is described. NO-releasing coatings on (poly(ethylene terephthalate) (PET) and silicone elastomer (SE)) were fabricated using aminosilane precursors. Pristine PET and SE were oxygen plasma treated, followed by immobilisation of two aminosilane molecules: -(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3) and -(3-trimethoxysilyl)propyl)aniline (PTMSPA).

View Article and Find Full Text PDF

Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume.

View Article and Find Full Text PDF

The linker-free covalent immobilization of polymers on surfaces has the potential to impart new properties and functions to surfaces for a wide range of applications. However, most current methods for the production of these surfaces involve multiple chemical steps and do not have a high degree of control over the chemical functionalities at the surface. A comprehensive study detailing the facile two-step covalent grafting of the antimicrobial peptide nisin onto polystyrene surfaces is reported.

View Article and Find Full Text PDF

Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess.

View Article and Find Full Text PDF

Hyaluronic acid (HA) has been immobilised on poly(methyl methacrylate) (PMMA) surfaces using a novel dielectric barrier discharge (DBD) plasma process for the purposes of repelling protein, cellular and bacterial adhesion in the context of improving the performance of ophthalmic devices. Grafting was achieved by the following steps: (1) treatment of the PMMA with a DBD plasma operating at atmospheric pressure, (2) amine functionalisation of the activated polymer surface by exposure to a 3-aminopropyltrimethoxysilane (APTMS) linker molecule and (3) reaction of HA with the surface bound amine. The mechanism and effectiveness of the grafting process was verified by surface analysis.

View Article and Find Full Text PDF

Advances in material sciences have enabled the fabrication of biomaterials which are able to provide the requisite cues to stimulate cells to behave in a specific way. Nanoscale surface topographies are well known to be able to positively influence cell-substrate interactions. This study reports on a novel series of poly(ε-caprolactone) PCL and poly(methyl methacrylate) demixed nanotopographic films as non-biological cell-stimulating cues.

View Article and Find Full Text PDF

Characterisation of the electrostatic properties of dental enamel is important for understanding the interfacial processes that occur on a tooth surface and how these relate to the natural ability of our teeth to withstand chemical attack from the acids in many soft drinks. Whereas, the role of the mineral component of the tooth enamel in providing this resistance to acid erosion has been studied extensively, the influence of proteins that are also present within the structure is not well understood. In this paper, we report for the first time the use of double-layer force spectroscopy to directly measure electrostatic forces on as received and hydrazine-treated (deproteinated) enamel surfaces in solutions with different pH to determine how the enamel proteins influence acid erosion surface potential and surface charge of human dental enamel.

View Article and Find Full Text PDF

This study investigates the role that surface functionalisation of silicone elastomer (SE) by atmospheric pressure plasma induced graft immobilisation of poly(ethylene glycol) methyl ether methacrylate (PEGMA) plays in the attendant biological response. SE is used in modern ophthalmic medical devices and samples of the material were initially plasma treated using a dielectric barrier discharge reactor (DBD) to introduce reactive oxygen functionalities, prior to in situ grafting of two molecular weights of PEGMA (MW 1000 Da: PEGMA(1000), MW 2000 Da: PEGMA(2000)). The variously processed surfaces were characterised by water contact angle analysis, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and atomic force microscopy.

View Article and Find Full Text PDF

Polymethylmethacrylate (PMMA) microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC) film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.

View Article and Find Full Text PDF

Selective control of cellular response to polymeric biomaterials is an important consideration for many ocular implant applications. In particular, there is often a need to have one surface of an ophthalmic implant capable of promoting cell attachment while the other needs to be resistant to this effect. In this study, an atmospheric pressure dielectric barrier discharge (DBD) has been used to modify the surface region of poly(methyl methacrylate) (PMMA), a well established ocular biomaterial, with the aim of promoting a controlled response to human lens epithelial cells (LEC) cultured thereon.

View Article and Find Full Text PDF