Publications by authors named "Rae Robertson"

Oligomerization of the HIV-1 protein Rev on the Rev Response Element (RRE) regulates nuclear export of genomic viral RNA and partially spliced viral mRNAs encoding for structural proteins. Single-molecule fluorescence spectroscopy has been used to dissect the multistep assembly pathway of this essential ribonucleoprotein, revealing dynamic intermediates and the mechanism of assembly. Assembly is initiated by binding of Rev to a high-affinity site in stem-loop IIB of the RRE and proceeds rapidly by addition of single Rev monomers, facilitated by cooperative Rev-Rev interactions on the RRE.

View Article and Find Full Text PDF

We use optical tweezers to directly measure the intermolecular forces acting on a single polymer imposed by surrounding entangled polymers (115 kbp DNA, 1 mg/ml). A tubelike confining field was measured in accord with the key assumption of reptation models. A time-dependent harmonic potential opposed transverse displacement, in accord with recent simulation findings.

View Article and Find Full Text PDF

Molecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres.

View Article and Find Full Text PDF

When long polymers such as DNA are in a highly concentrated state they may become entangled, leading to restricted self-diffusion. Here, we investigate the effect of molecular topology on diffusion in concentrated DNA solutions and find surprisingly large effects, even with molecules of modest length and concentration. We measured the diffusion coefficients of linear and relaxed circular molecules by tracking the Brownian motion of single molecules with fluorescence microscopy.

View Article and Find Full Text PDF

The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies.

View Article and Find Full Text PDF