Background: Clinically useful biomaterials are derived from xenogeneic extracellular matrices, but extensive processes often used to remove all residual DNA are detrimental to their proper biological function. We hypothesized that deliberate and repeated injection of DNA extracted from clinically implantable, xenogeneic extracellular matrices might elicit an immune response in a well-established murine model that could ultimately lead to altered extracellular matrix remodeling.
Methods: DNA was purified from unprocessed porcine extracellular matrices and processed extracellular matrices before sterilization (aseptic) and after sterilization.
Biologic grafts for hernia repair are a relatively new development in the world of surgery. A thorough search of the Medline database for uses of various biologic grafts in hernia shows that the evidence behind their application is plentiful in some areas (ventral, inguinal) and nearly absent in others (parastomal). The assumption that these materials are only suited for contaminated or potentially contaminated surgical fields is not borne out in the literature, with more than 4 times the experience being reported in clean fields and the average success rates being higher (93% vs 87%).
View Article and Find Full Text PDF