Searching for new compounds with anti-inflammatory properties is a significant target since inflammation is a major cause of pain. A series of pyrazole, imidazopyrazolone, and pyrazolopyrimidine derivatives were designed and synthesized by reaction of 3,5-diamino-1H-pyrazole derivative with cyclic and acyclic carbonyl reagents. The structure of the newly synthesized derivatives were fully characterized using different spectroscopic data and elemental analysis, and therefore, evaluated as COX-2 inhibitors.
View Article and Find Full Text PDFSearching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1).
View Article and Find Full Text PDFMethods: We utilized the hAM to provide the biological and the three dimensional (3D) topographic components of the prototype. The 3D nano-roughness of the hAM was characterized using surface electron microscopy and surface image analysis (ImageJ and SurfaceJ). We developed additional macro-scale and micro-scale versions of the platform which provided additional shear stress factors to simulate the fluid dynamics of the in vivo extracellular fluids.
View Article and Find Full Text PDF