Publications by authors named "Raducanu D"

A new Mg-Zn-Zr-Ca alloy in a powder state, intended to be used for custom shaped implants, was obtained via a mechanical alloying method from pure elemental powder. Further, the obtained powder alloy was processed by a PBF-LB/M (powder bed fusion with laser beam/of metal) procedure to obtain additive manufactured samples for small biodegradable implants. A series of microstructural, mechanical and corrosion analyses were performed.

View Article and Find Full Text PDF

The objective of this experimental work was to examine and characterise the route for obtaining demonstrative temporary biodegradable personalised implants from the Mg alloy Mg-10Zn-0.5Zr-0.8Ca (wt.

View Article and Find Full Text PDF

The microstructural characteristic evolution was investigated during thermomechanical processing of Ti-29Nb-9Ta-10Zr (wt %) alloy, which consisted of, in a first stage, in a Multi-Pass Rolling with increasing thickness reduction of 20%, 40%, 60%, 80%, and 90%; in step two, the multi-pass rolled sample with the highest thickness reduction (90%) was subjected to a series of three variants of static short recrystallization and then to a final similar aging. The objective was to evaluate the microstructural features evolution during thermomechanical processing (phase's nature, morphology, dimensions, and crystallographic characteristics) and to find the optimal heat treatment variant for refinement of the alloy granulation until ultrafine/nanometric level for a promising combination of mechanical properties. The microstructural features were investigated by X-ray diffraction and SEM techniques through which the presence of two phases was recorded: the β-Ti phase and the α″-Ti martensitic phase.

View Article and Find Full Text PDF

Deformation twinning is a phenomenon that causes local shear strain concentrations, with the material either experiencing elongation (and thus a tensile stress) or contraction (compressive stress) along the stress directions. Thus, in order to gauge the performance of the alloy better, it is imperative to predict the activation of twinning systems successfully. The present study investigates the effects of deformation by cold-rolling on the {332}<113> and {112}<111> twin variant activation in a Ti-30Nb-12Zr-5Ta-2Sn-1.

View Article and Find Full Text PDF

The aim of the present paper is to apply the laser powder bed fusion process to a new biodegradable Mg-Zn-Zr-Ca alloy powder prepared via a mechanical alloying method from powder pure components. This additive manufacturing method is expected to allow for the obtaining of high biomechanical and biochemical performance. Various processing parameters for laser powder bed fusion are tested, with a special focus on laser energy density-E [J/mm]-which is calculated for all experiment variants, and which represents an important processing parameter, dependent upon all the rest.

View Article and Find Full Text PDF

The present paper analyzes UNS S32750 Super-Duplex Stainless Steel hot deformation behavior during processing by upsetting. The objective of this paper is to determine the optimum range of deformation temperatures, considering that both austenite and ferrite have different deformation behaviors due to their different morphology, physical, and mechanical properties. Because the capability of plastic deformation accommodation of ferrite is reduced when compared to austenite, side cracks and fissures can form during the hot deformation process.

View Article and Find Full Text PDF

The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti-Nb-Zr-Fe-O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of ε = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young's modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations.

View Article and Find Full Text PDF

Introduction: Super-Duplex Stainless Steeles (SDSS) proved an excellent potential for its use in many chemical and offshore applications due to their both high mechanical properties and a high corrosion resistance in chloride ion solutions.

Objectives: This study evaluates the influence of ageing treatment temperature and duration on σ-phase precipitation and mechanical properties of UNS S32750 SDSS alloy.

Methods: The influence of ageing treatment on microstructural features was analysed by SEM-EBSD (Scanning Electron Microscopy - Electron Backscatter Diffraction) technique, while on mechanical properties by tensile and impact testing techniques.

View Article and Find Full Text PDF

A large variety of fusion tags have been developed to improve protein expression, solubilization, and purification. Nevertheless, these tags have been combined in a rather limited number of composite tags and usually these composite tags have been dictated by traditional commercially-available expression vectors. Moreover, most commercially-available expression vectors include either N- or C-terminal fusion tags but not both.

View Article and Find Full Text PDF

The polyhistidine tag (His-tag) is one of the most popular protein tags used in the life sciences. Traditionally, the detection of His-tagged proteins relies on immunoblotting with anti-His antibodies. This approach is laborious for certain applications, such as protein purification, where time and simplicity are critical.

View Article and Find Full Text PDF

The strength of the biotin/avidin interaction makes it an ideal tool for the purification of biotin-labeled proteins via avidin-coupled resin with high specificity and selectivity. Nevertheless, this tight binding comes at an extra cost of performing the elution step under denaturing conditions. Weakening the biotin/avidin interaction improves the elution conditions, but only to mild or harsh denaturing buffers with the drawback of reducing the specificity and selectivity of this interaction.

View Article and Find Full Text PDF

This work assesses the effect of essential oil on germination of spores inoculated in orange juice and milk. We also report the capacity of the essential oil at 0.25, 0.

View Article and Find Full Text PDF

The use of essential oils as a food preservative has increased due to their capacity to inhibit vegetative growth of some bacteria. However, only limited data are available on their effect on bacterial spores. The aim of the present study was to evaluate the effect of some essential oils on the growth and germination of three Bacillus species and Geobacillus stearothermophilus.

View Article and Find Full Text PDF

Aim: To evaluate whether coeliac disease (CD) can be diagnosed by measuring autoantibodies without small-intestinal mucosal biopsies in children with type 1 diabetes.

Methods: Case finding of CD was undertaken in 181 consecutive IgA-competent children with type 1 diabetes using transglutaminase 2 (TG2) and endomysial IgA antibody (EMA) tests in serum and the rapid point of care test in fingertip whole-blood sample. Endoscopy with intestinal biopsies was recommended for patients with high TG2-IgA titres (>96 U) and in children with lower positive tests if either the EMA test or the rapid point of care test was additionally positive.

View Article and Find Full Text PDF

Objectives: Intracranial hemorrhages (ICH) might be the cause of significant psycho-motor or cognitive impairment in preterm babies. A 5 year cohort study performed in the IOMC was aimed at determining the prevalence and proportion of the main types of ICH diagnosed by transfontanelar (TF) ultrasound among admitted preterms, along with the neuro-developmental effects on a 12 month follow-up period.

Material And Methods: In the above mentioned period all enrolled newborns were examined by TF ultrasound according to a common standardized protocol.

View Article and Find Full Text PDF

In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm.

View Article and Find Full Text PDF

One objective of this work was to study the corrosion resistance of the new implant Ti-10Zr-5Ta-5Nb alloy in physiological fluids of different pH values, simulating the extreme functional conditions. Another objective was in vitro biocompatibility evaluation of the new alloy using human fetal osteoblast cell line hFOB 1.19.

View Article and Find Full Text PDF