Publications by authors named "Radu-Emil Precup"

Computational models for large, resurgent epidemics are recognized as a crucial tool for predicting the spread of infectious diseases. It is widely agreed, that such models can be augmented with realistic multiscale population models and by incorporating human mobility patterns. Nevertheless, a large proportion of recent studies, aimed at better understanding global epidemics, like influenza, measles, H1N1, SARS, and COVID-19, underestimate the role of heterogeneous mixing in populations, characterized by strong social structures and geography.

View Article and Find Full Text PDF

This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space.

View Article and Find Full Text PDF

This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals.

View Article and Find Full Text PDF

This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices.

View Article and Find Full Text PDF

This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control.

View Article and Find Full Text PDF