We report on the synthesis of a novel perylene monoimide derivative that shows high response and selectivity for zinc ion detection. The complexation of Zn(2+) by the dye is followed by FD-MS, (1)H NMR, UV-vis spectroscopy, and isothermal titration calorimetry. Quantum chemical calculations are performed to gain further insight into the electronic processes responsible for the spectroscopic changes observed upon complexation.
View Article and Find Full Text PDFPhotocleavable oligohistidine peptides (POHP) allow in situ spatial organization of multiple His-tagged proteins onto surfaces functionalized with tris(nitrilotriacetic acid) (tris-NTA). Here, a second generation of POHPs is presented with improved photoresponse and site-specific covalent coupling is introduced for generating stable protein assemblies. POHPs with different numbers of histidine residues and a photocleavable linker based on the 4,5-dimethoxy-o-nitrophenyl ethyl chromophore are prepared.
View Article and Find Full Text PDFInspired by the amino acid 2-chloro-4,5-dihydroxyphenylalanine (Cl-DOPA), present in the composition of the proteinaceous glue of the sandcastle worm Phragmatopoma californica, a simple strategy is presented to confer antifouling properties to polymer surfaces using (but not releasing) a bioinspired biocide. Cl-Dopamine is used to functionalize polymer materials and hydrogel films easily, to prevent biofilm formation on them.
View Article and Find Full Text PDFThree different variants of photoactivatable caged paclitaxel (PTX) have been synthesized and their bioactivity was characterized in in vitro assays and in living cells. The caged PTXs contain the photoremovable chromophore 4,5-dimethoxy-2-nitrobenzyloxycarbonyl (Nvoc) attached to position C7, C2' and to both of these positions via a carbonate bond. Single caged PTXs remained biologically active even at low dosages.
View Article and Find Full Text PDFThe efficient synthesis, physicochemical and photolytical properties of a photoactivable BAPTA-based Ca(2+) cage containing two photosensitive o-nitrobenzhydryl groups attached to the aromatic core are described. Ca(2+) release in living cells was evaluated. The double substitution with the chromophores caused a significant improvement of the Ca(2+) release properties of nitr-T versus singly substituted reported nitr-x derivatives without compromising Ca(2+)/Mg(2+) selectivity or pH insensitivity.
View Article and Find Full Text PDFWe report the synthesis and properties of a photoactivatable caged RGD peptide and its application for phototriggering integrin- and cell-binding to surfaces. We analysed in detail 1) the differences in the integrin-binding affinity of the caged and uncaged forms by quartz crystal microbalance (QCM) studies, 2) the efficiency and yield of the photolytic uncaging reaction, 3) the biocompatibility of the photolysis by-products and irradiation conditions, 4) the possibility of site, temporal and density control of integrin-binding and therefore human cell attachment, and 5) the possibility of in situ generation of cell patterns and cell gradients by controlling the UV exposure. These studies provide a clear picture of the potential and limitations of caged RGD for integrin-mediated cell adhesion and demonstrate the application of this approach to the control and study of cell interactions and responses.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2010
The synthesis of a novel and multifunctional copolymer based on a human serum albumin backbone bearing several folic acid as well as PEO groups was presented. In solution, this side-chain copolymer adopts a globular architecture and about five molecules of the water-insoluble chromophore PDI were successfully incorporated into these micelles for receptor-mediated cell uptake investigations. A significant uptake of these bioconjugates via receptor-mediated endocytosis was detected for cells expressing folic acid receptors in the cell membrane.
View Article and Find Full Text PDFWe present the preparation and isolation of different chemically modified BSA species with varying numbers of primary amino groups at the surface. Highly cationic albumin proteins with increased numbers of amino groups were achieved and complex formation with plasmid DNA was carefully investigated. We compare the transfection results, polyelectrolyte complexes morphologies with their impact on complex stabilities, cytotoxicities and DNA accessibility.
View Article and Find Full Text PDFMultifunctional peptide-polymer hybrid materials have been applied as efficient and biocompatible quantum-dot coating materials. Significant pH responsiveness (e.g.
View Article and Find Full Text PDFBiomacromolecules
November 2008
Water-soluble core-shell star polymers consisting of a dendritic polyphenylene core and an outer shell containing a defined number of amino groups have been synthesized via atom transfer radical polymerization (ATRP). All macromolecules efficiently interacted with a diverse set of DNA fragments, and stable complexes were formed and visualized by atomic force microscopy. The observed tight binding of DNA, which was found in the sub-nanomolar range, was mainly attributed to strong electrostatic interactions.
View Article and Find Full Text PDF