An integrated method of dynamic extraction of perchloroethylene (PCE) with polydimethylsiloxane (PDMS) helical solid sorbent followed by injection into a gas chromatograph was developed for the determination of the real concentration of PCE in groundwater before and after its degradation by oxidation with KMnO(4). The main parameters (agitation, temperature, salts, pH) that affect the extraction efficiency have been evaluated and optimized. The increase of the extracted amount of PCE due to the presence of the salts could be partially compensated by the opposite effect of the insoluble MnO(2), and of the presence of HCl and the global effect of the matrix would be less important for the reproducibility of the PCE extraction.
View Article and Find Full Text PDFThe aim of this paper is the investigation of the leaching behaviour of different porous materials containing organic pollutants (PAH: naphthalene and phenanthrene). The assessment methodology of long term leaching behaviour of inorganic materials was extended to cement solidified organic pollutants. Based on a scenario-approach considering environmental factors, matrix and pollutants specificities, the applied methodology is composed of adapted equilibrium and dynamic leaching tests.
View Article and Find Full Text PDFIn this paper we investigate at laboratory scale the influence of the liquid/solid leaching conditions on the release of different chemical species from a reference porous material obtained by solidification of PbO and CdO with Portland cement. The pH influence on the dissolution of pollutants and the initial pore solution composition (target elements: Na(+), K(+), Ca(2+), Pb(2+), Cd(2+), SO(4)(2-)) were assessed by applying a methodology consisting of two equilibrium leaching tests, the Acid Neutralization Capacity (ANC) and the Pore Water (PW) tests and geochemical modelling. Samples of the same material were submitted in parallel to four different dynamic leaching tests in order to determine the influence of the sample shape (monolithic or granular) and eluate hydrodynamics (instantaneous L/S ratio, eluate renewal) on the leaching of the target elements.
View Article and Find Full Text PDFThis paper deals with process identification and model development for the case of a porous reference material leaching under certain hydrodynamic conditions. Four different dynamic leaching tests have been applied in order to take into account different types of solid/liquid contact conditions corresponding to various real leaching scenarios: monolithic and granular material with sequential eluate renewal, and granular material and continuously renewed eluate with different hydrodynamic conditions (dispersion, residence time). A coupled chemical-mass transfer model has been developed to describe the leaching behaviour under all experimental conditions.
View Article and Find Full Text PDFA helical sorbent microtrap consisting of a helical sorbent fixed inside a silicosteel capillary tube is presented. The main parameters that affect the safe sampling time of the helical sorbent microtrap in continuous sampling by a membrane and trap interface for on-line gas chromatographic monitoring of organic volatiles in gaseous samples are examined, taking into account the helical configuration of the sorbent, the presence of the membrane in system, and the properties of the analytes. Thermal desorption of analytes from the helical sorbent trap was also examined having regard to the influence of the turbulent flow generated by the helical sorbent in the heat transfer and the effect of thermal backward flow on the peak shape.
View Article and Find Full Text PDF