Publications by authors named "Radoslaw Sobota"

Article Synopsis
  • The study investigates how plasma metabolites are linked to the progression of chronic kidney disease in individuals with type 2 diabetes, focusing on kidney function decline measured by eGFR slope.
  • Researchers analyzed data from over 5,000 people, identifying specific elevated levels of lipids and amino acids that influence kidney function, both positively and negatively.
  • The findings suggest that metabolite abnormalities, particularly related to fatty acids, may indicate issues with fat breakdown and are connected to the risk of worsening kidney health in diabetic patients.
View Article and Find Full Text PDF

Notch1 plays various roles in cancer development, and Notch1-induced transactivation is controlled by phosphorylation of its cleaved intracellular domain. However, it is unclear whether there are phosphatases capable of dephosphorylating the cleaved Notch1 transmembrane/intracellular region (NTM) to regulate its function. Here, we show that DUSP6 can function as a phosphatase for Notch1, thereby regulating NTM stability and transcriptional activity, thus influencing colorectal cancer (CRC) development.

View Article and Find Full Text PDF

The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation.

View Article and Find Full Text PDF

Drug protein-target identification in past decades required screening compound libraries against known proteins to determine drugs binding to specific protein. Protein targets used in drug-target screening were selected predominantly used laborious genetic manipulation assays. In 2013, a team led by Pär Nordlund from Karolinska Institutet (Stockholm, Sweden) developed Cellular Thermal Shift Assay (CETSA), a method which, for the first time, enabled the possibility of drug protein-target identification in the complex cellular proteome.

View Article and Find Full Text PDF

Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins.

View Article and Find Full Text PDF

Shewanella baltica is a specific spoilage organism of golden pomfret. This study aims to explore the antibacterial mechanism of slightly acidic electrolysed water (SAEW) against S. baltica (strains ABa4, ABe2 and BBe1) in golden pomfret broths by metabolomics, proteomics and bioinformatics analyses.

View Article and Find Full Text PDF

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat () and human.

View Article and Find Full Text PDF

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC).

View Article and Find Full Text PDF

Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab.

View Article and Find Full Text PDF

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (mC) is a new epitranscriptomic mark on RNAs and METTL8 represents an mC writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) mC modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation.

View Article and Find Full Text PDF

Spinal Muscular Atrophy (SMA) is typically characterized as a motor neuron disease, but extra-neuronal phenotypes are present in almost every organ in severely affected patients and animal models. Extra-neuronal phenotypes were previously underappreciated as patients with severe SMA phenotypes usually died in infancy; however, with current treatments for motor neurons increasing patient lifespan, impaired function of peripheral organs may develop into significant future comorbidities and lead to new treatment-modified phenotypes. Fatty liver is seen in SMA animal models , but generalizability to patients and whether this is due to hepatocyte-intrinsic Survival Motor Neuron (SMN) protein deficiency and/or subsequent to skeletal muscle denervation is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with younger onset type 2 diabetes (YT2D) face a higher risk for kidney failure, yet the progression mechanism of diabetic kidney disease (DKD) in this group is not well understood.
  • A study involving 144 DKD progressors and 292 non-progressors aimed to find new biomarkers and causal proteins linked to DKD progression in YT2D, utilizing proteomic analysis and logistic regression methods.
  • Results identified 42 plasma proteins related to DKD progression, with angiogenin emerging as a significant factor, indicating its potential role in the disease's advancement.
View Article and Find Full Text PDF

Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine.

View Article and Find Full Text PDF

Phenotypic screening is a valuable tool to both understand and engineer complex biological systems. We demonstrate the functionality of this approach in the development of cell-free protein synthesis (CFPS) technology. Phenotypic screening identified numerous compounds that enhanced protein production in yeast lysate CFPS reactions.

View Article and Find Full Text PDF

In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge.

View Article and Find Full Text PDF

Cross-linking mass spectrometry (XL-MS) provides low-resolution structural information to model protein structures. Here, we present a protocol to identify cross-links of purified antibody binding to purified human leukocyte antigen (HLA). We describe steps for using a discovery-based XL-MS approach followed by a targeted XL-MS approach.

View Article and Find Full Text PDF

Quorum sensing (QS) is a crucial regulatory mechanism controlling bacterial signalling and holds promise for novel therapies against antimicrobial resistance. In Gram-positive bacteria, such as Streptococcus pneumoniae, ComA is a conserved efflux pump responsible for the maturation and secretion of peptide signals, including the competence-stimulating peptide (CSP), yet its structure and function remain unclear. Here, we functionally characterize ComA as an ABC transporter with high ATP affinity and determined its cryo-EM structures in the presence or absence of CSP or nucleotides.

View Article and Find Full Text PDF

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development.

View Article and Find Full Text PDF

Alloantibody recognition of donor human leukocyte antigen (HLA) is associated with poor clinical transplantation outcomes. However, the molecular and structural basis for the alloantibody-HLA interaction is not well understood. Here, we used a hybrid structural modeling approach on a previously studied alloantibody-HLA interacting pair with inputs from ab initio, in silico, and in vitro data.

View Article and Find Full Text PDF

Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism.

View Article and Find Full Text PDF

The stomatopod Odontodactylus scyllarus uses weaponized club-like appendages to attack its prey. These clubs are made of apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate organized in a highly hierarchical structure with multiple regions and layers. We follow the development of the biomineralized club as a function of time using clubs harvested at specific times since molting.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary malignant brain cancer in adults with a dismal prognosis. Temozolomide (TMZ) is the first-in-line chemotherapeutic; however, resistance is frequent and multifactorial. While many molecular and genetic factors have been linked to TMZ resistance, the role of the solid tumor morphology and the tumor microenvironment, particularly the blood-brain barrier (BBB), is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) is caused by the airborne bacteria Mycobacterium tuberculosis (Mtb), and while the role of antibodies in protecting against it isn't fully understood, they may play a crucial part in host defense.
  • This study analyzed the IgG/IgA memory B cell responses in healthy individuals exposed to TB, identifying a human monoclonal antibody that can protect against the disease by targeting a specific virulence factor called LpqH.
  • Findings showed that the protective effects varied depending on the antibody type, with IgG2 and IgA providing the strongest defense, suggesting new avenues for improving TB vaccines and understanding natural immunity.
View Article and Find Full Text PDF