Purpose: The primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer, is drug resistance. The mechanisms of drug resistance of cancer cells during chemotherapy may include compounds of the extracellular matrix, such as the transforming growth factor-beta-induced protein (TGFBI). In this study, we aimed to analyze the TGFBI gene and protein expression in different sensitive and drug-resistant ovarian cancer cell lines, as well as test if TGFBI can be involved in the response to topotecan (TOP) at the very early stages of treatment.
View Article and Find Full Text PDFOvarian cancer is the most common type of gynecologic cancer. One of the leading causes of high mortality is chemoresistance, developed primarily or during treatment. Different mechanisms of drug resistance appear at the cellular and cancer tissue organization levels.
View Article and Find Full Text PDFEpithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA.
View Article and Find Full Text PDFBackground: Inherent or developed during treatment drug resistance is the main reason for the low effectiveness of chemotherapy in ovarian cancer. IFI16 is a cytoplasmic/nuclear protein involved in response to virus's infection and cell cycle arrest associated with the cellular senescence.
Methods: Here we performed a detailed IFI16 expression analysis in ovarian cancer cell lines sensitive (A2780) and resistant to doxorubicin (DOX) (A2780DR1 and A2780DR2) and paclitaxel (PAC) (A2780PR1).
Ovarian cancer is the most common cause of gynecological cancer death. Cancer Stem Cells (CSCs) characterized by drug transporters and extracellular matrix (ECM) molecules expression are responsible for drug resistance development. The goal of our study was to examine the role of aldehyde dehydrogenase 1A1 (ALDH1A1) expression in paclitaxel (PAC) and topotecan (TOP) resistant ovarian cancer cell lines.
View Article and Find Full Text PDFOvarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA.
View Article and Find Full Text PDFOvarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to changes in the expression of many drug resistance genes as well as expression of extracellular matrix proteins and cell density in the tumor.
View Article and Find Full Text PDFOur goal was to examine the anticancer effects of piperine against the resistant human ovarian cancer cells and to explore the molecular mechanisms responsible for its anticancer effects. Our study used drug-sensitive ovarian cancer cell line W1 and its sublines resistant to paclitaxel (PAC) and topotecan (TOP). We analyzed the cytotoxic effect of piperine and cytostatic drugs using an MTT assay.
View Article and Find Full Text PDFThe microenvironment possesses a strong impact on the tumor chemoresistance when cells bind to components of the extracellular matrix. Here we elucidate the signaling pathways of cisplatin resistance in W1 ovarian cancer cells binding to collagen type 1 (COL1) and signaling interference with constitutive cisplatin resistance in W1CR cells to discover the targets for sensitization. Proteome kinase arrays and Western blots were used to identify the signaling components, their impact on cisplatin resistance was evaluated by inhibitory or knockdown approaches.
View Article and Find Full Text PDFOvarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to increased expression of drug transporters and increased expression of extracellular matrix (ECM) proteins.
View Article and Find Full Text PDFBackground: Tumor cell binding to the microenvironment is regarded as the onset of therapeutic resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate whether CAM-DR occurs in ovarian cancer cells and contributes to still-existing cisplatin resistance.
Methods: Cultivation of W1 and cisplatin-resistant W1CR human ovarian cancer cells on collagen-type I (COL1) was followed by whole genome arrays, MTT assays focusing cisplatin cytotoxicity, and AAS detection of intracellular platinum levels.
One of the main obstacles to the effective treatment of ovarian cancer patients continues to be the drug resistance of cancer cells. Osteoblast-Specific Factor 2 (OSF-2, Periostin) is a secreted extracellular matrix protein (ECM) expressed in fibroblasts during bone and teeth development. Expression of OSF-2 has been also related to the progression and drug resistance of different tumors.
View Article and Find Full Text PDFOvarian cancer is the fifth leading cause of cancer-related deaths in women. Its high mortality rate results from lack of adequate and sensitive methods allowing for the detection of the early stages of the disease, as well as low efficiency of the treatment, caused by the cytotoxic drug resistance of cancer cells. Unfortunately, tumours are able to develop new pathways and protective mechanisms that allow them to survive toxic conditions of chemotherapy.
View Article and Find Full Text PDFOvarian cancer is the 7th most common cancer and 8th most mortal cancer among woman. The standard treatment includes cytoreduction surgery followed by chemotherapy. Unfortunately, in most cases, after treatment, cancer develops drug resistance.
View Article and Find Full Text PDFA major contributor leading to treatment failure of ovarian cancer patients is the drug resistance of cancer cell. CSCs- (cancer stem cells) and ECM (extracellular matrix)-related models of drug resistance are described as independently occurring in cancer cells. Lysyl oxidase (LOX) is another extracellular protein involved in collagen cross-linking and remodeling of extracellular matrix and has been correlated with tumor progression.
View Article and Find Full Text PDFLow effectiveness of chemotherapy in ovarian cancer results from development of drug resistance during treatment. Topotecan (TOP) is a chemotherapeutic drug used in second-line chemotherapy of this cancer. Unfortunately, during treatment cancer can develop diverse cellular and tissue specific mechanisms of resistance to cytotoxic drugs.
View Article and Find Full Text PDFThe major cause of ovarian cancer treatment failure in cancer patients is inherent or acquired during treatment drug resistance of cancer. Matrix Gla protein (MGP) is a secreted, non-collagenous extracellular matrix protein involved in inhibition of tissue calcification. Recently, MGP expression was related to cellular differentiation and tumor progression.
View Article and Find Full Text PDFDevelopment of drug resistance is the main reason for low chemotherapy effectiveness in treating ovarian cancer. Paclitaxel (PAC) is a chemotherapeutic drug used in the treatment of this cancer. We analysed the development of PAC resistance in two ovarian cancer cell lines.
View Article and Find Full Text PDFDNA damage activated by Adriamycin (ADR) promotes ubiquitin-proteasome system-mediated proteolysis by stimulating both the activity of ubiquitylating enzymes and the proteasome. In ADR-resistant breast cancer MCF7 (MCF7) cells, protein ubiquitylation is significantly reduced compared to the parental MCF7 cells. Here, we used tandem ubiquitin-binding entities (TUBEs) to analyze the ubiquitylation pattern observed in MCF7 or MCF7 cells.
View Article and Find Full Text PDFPurpose: The aim of the present study is to determine the expression of LUM in drug-resistant ovarian cancer cell lines.
Methods: Doxorubicin- (DOX), topotecan- (TOP) and vincristine- (VIN) resistant variants of the W1 ovarian cancer cell line were used in this study. We used quantitative real-time polymerase chain reactions to determine LUM mRNA levels.
Low efficiency of chemotherapy in ovarian cancer results from the development of drug resistance. Cisplatin (CIS) and topotecan (TOP) are drugs used in chemotherapy of this cancer. We analyzed the development of CIS and TOP resistance in ovarian cancer cell lines.
View Article and Find Full Text PDFPurpose: The present study is to discover a new genes associated with drug resistance development in ovarian cancer.
Methods: We used microarray analysis to determine alterations in the level of expression of genes in cisplatin- (CisPt), doxorubicin- (Dox), topotecan- (Top), and paclitaxel- (Pac) resistant variants of W1 and A2780 ovarian cancer cell lines. Immunohistochemistry assay was used to determine protein expression in ovarian cancer patients.
Background/aim: The definition of vault (ribonucleoprotein particles) function remains highly complex. Vaults may cooperate with multidrug resistance (MDR) proteins, supporting their role in drug resistance. This topic is the main theme of this publication.
View Article and Find Full Text PDFBackground: Low effectiveness of chemotherapy in ovarian cancer results from development of drug resistance. Topotecan is a drug used as second-line chemotherapy for this cancer type. We analyzed development of topotecan resistance in ovarian cancer cell lines.
View Article and Find Full Text PDFBackground: Multiple drug resistance (MDR) of cancer cells is the main reason of intrinsic or acquired insensitivity to chemotherapy in many cancers. In this study we used ovarian cancer model of acquired drug resistance to study development of MDR. We have developed eight drug resistant cell lines from A2780 ovarian cancer cell line: two cell lines resistant to each drug commonly used in ovarian cancer chemotherapy: cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX) and topotecan (TOP).
View Article and Find Full Text PDF