Publications by authors named "Radosav Pantelic"

We characterize a hybrid pixel direct detector and demonstrate its suitability for electron energy loss spectroscopy (EELS). The detector has a large dynamic range, narrow point spread function, detective quantum efficiency ≥ 0.8 even without single electron arrival discrimination, and it is resilient to radiation damage.

View Article and Find Full Text PDF

3D electron diffraction has reached a stage where the structures of chemical compounds can be solved productively. Instrumentation is lagging behind this development, and to date dedicated electron diffractometers for data collection based on the rotation method do not exist. Current studies use transmission electron microscopes as a workaround.

View Article and Find Full Text PDF

Chemists of all fields currently publish about 50 000 crystal structures per year, the vast majority of which are X-ray structures. We determined two molecular structures by employing electron rather than X-ray diffraction. For this purpose, an EIGER hybrid pixel detector was fitted to a transmission electron microscope, yielding an electron diffractometer.

View Article and Find Full Text PDF

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage.

View Article and Find Full Text PDF

Graphene represents the first practical realization of crystalline supports in biological transmission electron microscopy (TEM) since their introduction over 30 years ago. The high transparency, minimal inelastic cross-section, and electrical conductivity of graphene are highly desirable characteristics for a TEM support. However, without a suitable method for rendering graphene supports, hydrophilic applications are limited.

View Article and Find Full Text PDF

This technical note describes the transfer of continuous, single-layer, pristine graphene to standard Quantifoil TEM grids. We compare the transmission properties of pristine graphene substrates to those of graphene oxide and thin amorphous carbon substrates. Positively stained DNA imaged across amorphous carbon is typically indiscernible and requires metal shadowing for sufficient contrast.

View Article and Find Full Text PDF

Electron crystallography is a powerful technique for the structure determination of membrane proteins as well as soluble proteins. Sample preparation for 2D membrane protein crystals is a crucial step, as proteins have to be prepared for electron microscopy at close to native conditions. In this review, we discuss the factors of sample preparation that are key to elucidating the atomic structure of membrane proteins using electron crystallography.

View Article and Find Full Text PDF

Graphene oxide is a hydrophilic derivative of graphene to which biological macromolecules readily attach, with properties superior to those of amorphous carbon films commonly used in electron microscopy. The single-layered crystalline lattice of carbon is highly electron transparent, and exhibits conductivity higher than amorphous carbon. Hence, graphene oxide is a particularly promising substrate for the examination of biological materials by electron microscopy.

View Article and Find Full Text PDF

A three-dimensional (3D) cryoelectron microscopy reconstruction of the prototype Atadenovirus (OAdV [an ovine adenovirus isolate]) showing information at a 10.6-A resolution (0.5 Fourier shell correlation) was derived by single-particle analysis.

View Article and Find Full Text PDF

Edge-detection algorithms have the potential to play an increasingly important role both in single particle analysis (for the detection of randomly oriented particles), and in tomography (for the segmentation of 3D volumes). However, the majority of traditional linear filters are significantly affected by noise as well as artefacts, and offer limited selectivity. The Bilateral edge filter presented here is an adaptation of the Bilateral filter [Jiang, W.

View Article and Find Full Text PDF

Background: The genomic revolution has led to rapid growth in sequencing of genes and proteins, and attention is now turning to the function of the encoded proteins. In this respect, microscope imaging of a protein's sub-cellular localisation is proving invaluable, and recent advances in automated fluorescent microscopy allow protein localisations to be imaged in high throughput. Hence there is a need for large scale automated computational techniques to efficiently quantify, distinguish and classify sub-cellular images.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in 3D electron microscopy are enhancing our ability to visualize subcellular structures and proteins, but damage from electron beams limits image quality.
  • A new discriminative bilateral (DBL) filter improves noise reduction in these images by distinguishing between important object edges and unwanted high-frequency noise.
  • The DBL filter proves effective for enhancing low signal-to-noise ratio data, making it beneficial for both single particle analysis and preparing cellular tomograms for better segmentation.
View Article and Find Full Text PDF
Article Synopsis
  • Single particle analysis (SPA) with high-resolution electron cryo-microscopy is a vital technique for determining the structures of membrane proteins and macromolecular assemblies, needing around 10,000 to 100,000 particle projections for a 3A resolution 3D reconstruction.
  • Swarm(PS) is a user-friendly software designed to streamline the particle picking process for these projects, utilizing advanced algorithms like cross-correlation and edge detection while allowing for interactive user input to optimize performance.
  • The software supports handling multiple images, offers various particle selection methods, and ensures flexibility for corrections, ultimately facilitating the exporting of data for further image processing.
View Article and Find Full Text PDF