Publications by authors named "Radka Vagnerova"

Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits.

View Article and Find Full Text PDF

RAD51 is involved in finding and invading homologous DNA sequences for accurate homologous recombination (HR). Its paralogs have evolved to regulate and promote RAD51 functions. The efficient gene targeting and high HR rates are unique in plants only in the moss ().

View Article and Find Full Text PDF

Kleisin NSE4 and circular form of SMC5/6 is indispensable for DSB repair and necessary for gene targeting but is not enough for recovery of cells from DNA damage in Physcomitrella. Structural maintenance of chromosomes (SMC) complexes are involved in cohesion, condensation and maintenance of genome stability. Based on the sensitivity of mutants to genotoxic stress the SMC5/6 complex is thought to play a prominent role in DNA stabilization during repair by tethering DNA at the site of lesion by a heteroduplex of SMC5 and SMC6 encircled with non-SMC components NSE1, NSE3 and kleisin NSE4.

View Article and Find Full Text PDF

Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action.

View Article and Find Full Text PDF
Article Synopsis
  • Research on algae often centers around how their physical traits change due to their environment, particularly their response to stress.
  • This study examines how filamentous green algae and a moss, as land plants, respond to DNA damage caused by specific chemicals and UV light.
  • Findings indicate that while the algae show similar levels of DNA damage and repair rates, the moss exhibits less damage overall yet is more sensitive to genotoxic stress, indicating potentially different mechanisms in protecting their genetic material.
View Article and Find Full Text PDF

A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells.

View Article and Find Full Text PDF

The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus.

View Article and Find Full Text PDF

The rat undergoes profound maturational changes in the intestinal structure and function during the third week of its life. To investigate the role of peripheral glucocorticoid metabolism in this process, we studied the postnatal maturation of intestinal structure and function. The peripheral metabolism of glucocorticoids depends on enzyme 11beta-hydroxysteroid dehydrogenase (11betaHSD), which is responsible for the interconversion of corticosterone to 11-dehydrocorticosterone and thus for the modulation of glucocorticoid access to corticosteroid receptors.

View Article and Find Full Text PDF