Microwave extraction of active compounds from plants offers an efficient alternative to traditional methods, highlighting the need to investigate its modeling and kinetic mechanisms for comprehensive understanding. This study evaluated kinetic models for the microwave-assisted hydrodistillation (MAHD) of ethanimidic acid from hibiscus flowers. Experimental data, including ethanimidic acid concentration as a function of time, power, and solid-to-liquid ratio, were analyzed using three-parameter empirical models.
View Article and Find Full Text PDFGeopolymers are synthesized by alkali or acid activation of aluminosilicate materials. This paper critically reviews the synthesis kinetics and formation mechanism of geopolymers. A variety of mechanistic tools such as Environmental Scanning Electron Microscopy (ESEM) and Energy Dispersive X-ray diffractometry (EDXRD), Isothermal Conduction Calorimetry (ICC), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), H low-field Nuclear Magnetic Resonance (NMR) and Isothermal Conduction Calorimetry (ISC), and others and phenomenological models such as the John-Mehl-Avrami-Kolmogorov (JMAK) model, modified Jandar model, and exponential and Knudson linear dispersion models were used to study the geopolymerization kinetics and many mechanisms were proposed for the synthesis of geopolymers.
View Article and Find Full Text PDFOreochromis niloticus was subjected to sub-lethal Cd and Zn concentrations for 14 days in order to evaluate their accumulation in the gills, liver, and muscle. Following that, the fish were placed to uncontaminated water for 7 days to allow the metals to be removed from the tissues. The gills had the highest bio-concentration factor for Cd and Zn.
View Article and Find Full Text PDFAntibiotics in water systems and wastewater are among the greatest major public health problem and it is global environmental issues. Herein a novel approach for the photocatalytic degradation of metronidazole (MTZ) by using eco-green zinc oxide nanoparticles (EG-ZnO NPs) which biosynthesised using watermelon peels extracts has been investigated. Mathematical prediction models using an adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and response surface methodology (RSM) were used to determine the optimal conditions for the degradation process.
View Article and Find Full Text PDFThe current work reviews the quantitative microbiological risk assessment of antibiotic-resistant bacteria (ARB) in greywater and discusses the international strategies currently used for reducing antimicrobial resistance. The work highlights the countries that have a plan for the treatment and reuse of greywater and the current guidelines used in these countries. The paper also investigates the role of greywater in the distribution of antimicrobial resistance because of antibiotics and ARB.
View Article and Find Full Text PDFThe microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems.
View Article and Find Full Text PDFEnviron Res
June 2022
The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation.
View Article and Find Full Text PDFThe study explored the characteristics and effectiveness of modified TiO nanotubes with zeolite as a composite photocatalyst (MTNZC) for the degradation of triclocarban (TCC) from the aqueous solution. MTNZC samples have been produced via electrochemical anodisation (ECA) followed by electrophoretic deposition (EPD). Three independent factors selected include MTNZC size (0.
View Article and Find Full Text PDFRhodamine B (RhB) dye used in the textile industries is associated with carcinogenic and neurotoxic effects with a high potential to cause a variety of human diseases. Semiconductor photocatalysts synthesised through agriculture waste extracts exhibited high efficiency for RhB removal. The current review aimed to explore the efficiency and mechanism of RhB degradation using different photocatalysts that have been used in recent years, as well as the effect of various factors on the removal process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2023
The current work aimed to investigate the degradation of the triclocarban (TCC) in aqueous solution using a modified zeolite/TiO composite (MZTC) synthesized by applying the electrochemical anodization (ECA). The synthesis process was conducted at different voltages (10, 40, and 60) V in 1 h and using electrophoresis deposition (EPD) in doping zeolite. The MZTC was covered with the array ordered, smooth and optimum elongated nanotubes with 5.
View Article and Find Full Text PDFSlaughterhouse and wet market wastes are pollutants that have been always neglected by society. According to the Food and Agriculture Organization of the United Nations, more than three billion and nineteen million livestock were consumed worldwide in 2018, which reflects the vast amount and the broad spectrum of the biowastes generated. Slaughterhouse biowastes are a significant volume of biohazards that poses a high risk of contamination to the environment, an outbreak of diseases, and insecure food safety.
View Article and Find Full Text PDFRhodamine B (RhB) is among the toxic dyes due to the carcinogenic, neurotoxic effects and ability to cause several diseases for humans. The adsorption with agricultural waste adsorbent recorded high performance for the RhB removal. The current review aimed to explore the efficiency of different adsorbents which have been used in the few last years for removing RhB dye from wastewater.
View Article and Find Full Text PDFThe current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021.
View Article and Find Full Text PDFMillions of litters of multifarious wastewater are directly disposed into the environment annually to reduce the processing costs leading to eutrophication and destroying the clean water sources. The bioelectrochemical systems (BESs) have recently received significant attention from researchers due to their ability to convert waste into energy and their high efficiency of wastewater treatment. However, most of the performed researches of the BESs have focused on energy generation, which created a literature gap on the utilization of BESs for wastewater treatment.
View Article and Find Full Text PDFThe current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR.
View Article and Find Full Text PDFThe promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells.
View Article and Find Full Text PDFTextile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution.
View Article and Find Full Text PDFThe present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant were determined. Further, the techno-economic analysis of PhACs production was estimated.
View Article and Find Full Text PDFMicroalgae can be used as a source of alternative food, animal feed, biofuel, fertilizer, cosmetics, nutraceuticals and for pharmaceutical purposes. The extraction of organic constituents from microalgae cultivated in the different nutrient compositions is influenced by microalgal growth rates, biomass yield and nutritional content in terms of lipid and fatty acid production. In this context, nutrient composition plays an important role in microalgae cultivation, and depletion and excessive sources of this nutrient might affect the quality of biomass.
View Article and Find Full Text PDFIn a slow sand filter, a biological layer consisting of alluvial mud and various types of microorganisms grows and attaches to the sand media and forms a matrix called . Changes to several factors, including the quality of raw water, filtration speed, and the addition of media, affect the performance of the slow sand filter unit in producing treated water. Geotextiles can be equipped to improve the performance of a slow sand filter in removing pollutants.
View Article and Find Full Text PDFThe previous research showed that slow sand filtration (SSF) can remove the total coli by approximately 99% because of the layer in the filter. The presented study aimed to complete the previous research on SSF, especially on the layer mechanism, to remove total coli. Total coli is a parameter of water quality standard in Indonesia, and the behavior of affects the total coli removal.
View Article and Find Full Text PDFThe present study deals with optimizing, producing, characterizing, application and techno- economic analysis of oxidative enzymes [Laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP)] from Aspergillus iizukae EAN605 in submerged fermentation process using pumpkin peels as a production substrate. The best operating parameters for producing Lac, MnP and LiP (6.15, 2.
View Article and Find Full Text PDFThe inactivation of antibiotic resistant Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) seeded in greywater by bimetallic bio-nanoparticles was optimized by using response surface methodology (RSM). The bimetallic nanoparticles (Cu/Zn NPs) were synthesized in secondary metabolite of a novel fungal strain identified as Aspergillus iizukae EAN605 grown in pumpkin medium. Cu/Zn NPs were very effective for inhibiting growth of E.
View Article and Find Full Text PDFIn this article, the utilization of fungi for the degradation of xenobiotic organic compounds (XOCs) from different wastewater and aqueous solutions has been reviewed. The myco-remediation (myco-enzymes, myco-degradation, and myco-sorption) process is widely used to remove XOCs, which are not easily biodegradable. The removal of XOCs from textile wastewaters through chemical and physical processes has been addressed by many researchers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2019
Production of Scenedesmus sp. biomass in chicken slaughterhouse wastewater (CSWW) is a promising alternative technique for commercial culture medium due to the high nutritional content of the generated biomass to be used as fish feeds. The current work deals with optimising of biomass production in CSWW using response surface methodology (RSM) as a function of two independent variables, namely temperature (10-30 °C) and photoperiod (6-24 h).
View Article and Find Full Text PDF