Publications by authors named "Radim Vrzal"

The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles.

View Article and Find Full Text PDF

Plasminogen activator inhibitor 1 (PAI-1) is a crucial serine protease inhibitor that prevents plasminogen activation by inhibiting tissue- and urokinase-type plasminogen activators (tPA, uPA). PAI-1 is well-known for its role in modulating hemocoagulation or extracellular matrix formation by inhibiting plasmin or matrix metalloproteinases, respectively. PAI-1 is induced by pro-inflammatory cytokines across various tissues, yet its regulation by ligand-activated transcription factors is partly disregarded.

View Article and Find Full Text PDF

Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner.

View Article and Find Full Text PDF

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors.

View Article and Find Full Text PDF

The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding.

View Article and Find Full Text PDF

The activation of the aryl hydrocarbon receptor (AhR) by xenobiotic compounds was demonstrated to result in the degradation of the androgen receptor (AR). Since prostate cancer is often dependent on AR, it has become a significant therapeutic target. As a result of the emerging concept of bacterial mimicry, we tested whether compounds with indole scaffolds capable of AhR activation have the potential to restrict AR activity in prostate cancer cells.

View Article and Find Full Text PDF

Skatole (3-methylindole) is a heterocyclic compound naturally found in the feces of vertebrates and is produced by certain flowers. Skatole has been used in specific products of the perfume industry or as a flavor additive in ice cream. Additionally, skatole is formed by tryptophan pyrolysis of tobacco and has been demonstrated to be a mutagen.

View Article and Find Full Text PDF

Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons.

View Article and Find Full Text PDF

Targeting the aryl hydrocarbon receptor (AhR) is an emerging therapeutic strategy for multiple diseases (e.g., inflammatory bowel disease).

View Article and Find Full Text PDF

Scope: CYP3A4 is the most important drug-metabolizing enzyme regulated via the vitamin D receptor (VDR) in the intestine. However, less is known about VDR in the regulation of CYP3A4 and other drug-metabolizing enzymes in the liver.

Methods And Results: This study investigates whether 1α,25-dihydroxyvitamin D (1α,25(OH) D ) regulates major cytochrome P450 enzymes, selected phase I and II enzymes, and transporters involved in xenobiotic and steroidal endobiotic metabolism in 2D and 3D cultures of human hepatocytes.

View Article and Find Full Text PDF

Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).

View Article and Find Full Text PDF

Androgen receptor (AR) signalling is triggered by androgens that have lipophilic nature. Since it was indicated that graphene oxide (GO) might facilitate passive diffusion of lipophilic compounds probably via Trojan horse-like mechanism, we tested the hypothesis if this suggestion would apply for androgens as well. Thus, we investigated if GO affects dihydrotestosterone (DHT)-triggered signalling of AR in two prostate cancer-derived cell lines, 22Rv1 and LNCaP.

View Article and Find Full Text PDF

The interplays between the metabolic products of intestinal microbiota and the host signaling through xenobiotic receptors, including pregnane X receptor (PXR), are of growing interest, in the context of intestinal health and disease. A distinct class of microbial catabolites is formed from dietary tryptophan, having the indole scaffold in their core structure, which is a biologically active entity. In the current study, we examined a series of ten tryptophan microbial catabolites for their interactions with PXR signaling.

View Article and Find Full Text PDF
Article Synopsis
  • * Interleukin-23 (IL-23) has been found to promote CRPC development by influencing androgen receptor (AR) activity and affects cellular senescence levels specifically in CRPC cells, inhibiting the effects of AR antagonists like enzalutamide and darolutamide.
  • * Research involving cell lines and 3D spheroids indicates that while AR antagonists reduce cell growth, the presence of IL-23 does not enhance this growth inhibition, suggesting IL-23 may play a role in developing castration resistance in prostate cancer. *
View Article and Find Full Text PDF

Graphene oxide (GO) is an engineered nanomaterial which was demonstrated to have outstanding capacity for adsorption of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the ligands and activators of the aryl hydrocarbon receptor (AhR). Due to the partially overlapping ligand capacity of AhR and pregnane X receptor (PXR), we tested the impact of GO particles on their signalling. While reporter gene assay revealed potentiating effect of GO on ligand-activated AhR-dependent luciferase activity, there was no effect for PXR.

View Article and Find Full Text PDF

The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR.

View Article and Find Full Text PDF

We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies.

View Article and Find Full Text PDF

Some epidemiological studies suggested caffeine consumption as the cause for bone mineral density loss. Certain genes involved in this process are regulated by vitamin D receptor (VDR). Therefore, we investigated if caffeine can affect inducible expression of VDR-regulated genes, some of them being involved in bone mineralization process.

View Article and Find Full Text PDF

Mycophenolate Mofetil (MYC) is a transplant drug used to prevent rejection in heart and kidneys transplant patients. Inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in synthesis of guanosine nucleotides, was considered as a primary target for MYC. Recently, we described that MYC was activates aryl hydrocarbon receptor and it antagonizes glucocorticoid receptor.

View Article and Find Full Text PDF

Novel methylindoles were identified as endobiotic and xenobiotic ligands of the human aryl hydrocarbon receptor (AhR). We examined the effects of 22 methylated and methoxylated indoles on the transcriptional activity of AhRs. Employing reporter gene assays in AZ-AHR transgenic cells, we determined full agonist, partial agonist, or antagonist activities of tested compounds, having substantially variable EC, IC, and relative efficacies.

View Article and Find Full Text PDF

Bisphenol S (BPS) is heat-stable structural analog of bisphenol A (BPA), a known endocrine disruptor. Due to the effort to replace BPA with BPS, it is essential to know if BPS is suitable non-toxic replacement without reported deleterious effects of BPA. Since most of the BPA effects are ascribed to its ability to activate nuclear receptors, we screened some prominent members of this family in order to confirm or refute some recent findings.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) is a transcription factor, the activity of which is modulated by hormones including glucocorticoids and estrogens. In this study, we examined the effects of triiodothyronine (T3), a ligand and activator of thyroid hormone receptor (TR), on transcriptional activity of AhR and the expression of its target gene CYP1A1. Study was carried out in human hepatocellular carcinoma cells HepG2 and primary cultures of human hepatocytes (HH).

View Article and Find Full Text PDF

Vitamin D receptor (VDR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors. Activated VDR is responsible for maintaining calcium and phosphate homeostasis, and is required for proper cellular growth, cell differentiation and apoptosis. The expression of both phases I and II drug-metabolizing enzymes is also regulated by VDR, therefore it is clinically important.

View Article and Find Full Text PDF

The development of biologically active molecules based on molecular recognition is an attractive and challenging task in medicinal chemistry and the molecules that can activate/deactivate certain receptors are of great medical interest. In this contribution, selected pyrimidine/piperidine derivatives were synthesized and tested for the ability to activate/deactivate Aryl hydrocarbon receptor (AhR) and Glucocorticoid receptor (GR). Tested compounds are shown to activate the receptors but to much lesser extent than positive controls, dioxin and dexamethasone for Ahr and GR, respectively.

View Article and Find Full Text PDF

The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way.

View Article and Find Full Text PDF